Reg. No.			
----------	--	--	--

MANIPAL ACADEMY OF HIGHER EDUCATION

FIRST SEMESTER M.Sc. MEDICAL (ANATOMY, PHYSIOLOGY, BIOCHEMISTRY, PHARMACOLOGY, MICROBIOLOGY) DEGREE EXAMINATION – JANUARY 2020 SUBJECT: BASIC SCIENCES – COMMON CORE 1 (MCC 601)

Monday, January 13, 2020

Time: 14:00 - 16:30 Hrs.

Maximum Marks: 50

- Answer Section "A", Section "B" and Section "C" in THREE separate answer books.
- All questions are compulsory.
- Illustrate your answers with neatly drawn and correctly labeled diagrams wherever necessary.

SECTION "A" (ANATOMY): 20 MARKS

1. Enumerate the parts of gastrointestinal tract. Describe the stomach in detail.

(4+6 = 10 marks)

- 2. Write briefly on:
- 2A. Name the arteries of upper and lower limb.
- 2B. Name the parts of long bone. Describe its blood supply.

 $(5 \text{ marks} \times 2 = 10 \text{ marks})$

SECTION "B" (PHYSIOLOGY): 15 MARKS

- 1A. Name the hormones produced from posterior pituitary. List the actions of each
- 1B. Explain how oxygen is transported from lungs to tissues? List the factors which shift the oxygen haemoglobin dissociation curve to right. Add a note on hypoxic hypoxia.

(5+5 = 10 marks)

2. With a diagram explain the changes occurring in the endometrium during menstrual cycle.

(5 marks)

SECTION "C" (BIOCHEMISTRY): 15 MARKS

- **Answer the following:**
- 1. Explain competitive inhibition of enzymes giving suitable examples

(5 marks)

- 2A. Describe structure and function of tRNA.
- 2B. Classify proteins based on their functions

 $(2\frac{1}{2} \text{ marks} \times 2 = 5 \text{ marks})$

- 3A. Define essential fatty acids and give two examples.
- 3B. Name the deficiency diseases of vitamin C and niacin
- 3C. Explain the cause for oedema in kwashiorkor
- 3D. Write the normal serum calcium level. Name 2 hormones that regulate calcium level
- 3E. Write an example of mucopolysaccharide and mention its function

 $(1 \text{ mark} \times 5 = 5 \text{ marks})$

D N	1					
Reg. No.	1	i l	- 0			1 1
			9			
L			 	 	 -	

MANIPAL ACADEMY OF HIGHER EDUCATION

FIRST SEMESTER M.Sc. (MEDICAL BIOCHEMISTRY) DEGREE EXAMINATION – JANUARY 2020 SUBJECT: CARBOHYDRATES AND PROTEIN – CHEMISTRY AND METABOLISM (MBC 603)

Tuesday, January 14, 2020

Time: 14:00 - 16:30 Hrs.

Maximum Marks: 50

- Answer ALL the questions.
- ∠ Long answer questions:
- 1A. Discuss glycine metabolism.
- 1B. Explain the formation and biological significance of special compounds formed from glycine
- 2. Write the reactions of Emden-Meyerhof pathway occurring in erythrocytes, including aspects of regulation and energetics.

 $(10 \text{ marks} \times 2 = 20 \text{ marks})$

- 3. Write briefly on:
- 3A. Structure-function relationship of hemoglobin,
- 3B. Digestion of carbohydrates and absorption of glucose in the intestine
- 3C. Polyol pathway and its significance.
- 3D. Clinical importance of C-reactive protein and ceruloplasmin
- 3E. Heteropolysaccharides-composition and functions
- 3F. Galactosemia- defect and clinical complication

 $(5 \text{ marks} \times 6 = 30 \text{ marks})$

MANIPAL ACADEMY OF HIGHER EDUCATION

FIRST SEMESTER M.Sc. (MEDICAL BIOCHEMISTRY) DEGREE EXAMINATION – JANUARY 2020 SUBJECT: GENERAL TECHNIQUES AND ENZYMES (MBC 605)

Wednesday, January 15, 2020

Time: 14:00 – 16:30 Hrs.

Maximum Marks: 50

- ∠ Long answer questions:
- 1. Explain competitive, non-competitive and allosteric enzyme inhibitions giving one example for each

(10 marks)

2. Write the principal and applications of differential ultracentrifugation. Explain a scheme for the fractionation of rat liver homogenate into subcellular fractions

(10 marks)

- 3. Short Answer Questions
- 3A. Enzyme Linked Immunosorbent assay (ELISA)
- 3B. Principle and applications of spectrophotometry
- 3C. Affinity chromatography
- 3D. Ion-selective electrode
- 3E. Scintillation counter
- 3F. Cell disruption methods

 $(5 \text{ marks} \times 6 = 30 \text{ marks})$

MBC 605