D N					
Reg. No.					

MANIPAL UNIVERSITY

FIRST SEMESTER M.Sc. (MEDICAL RADIATION PHYSICS) DEGREE EXAMINATION – JUNE 2016

SUBJECT: PAPER I: BASIC MEDICAL SCIENCES (ANATOMY & PHYSIOLOGY)

Wednesday, June 15, 2016

Time: 10:00 - 13:00 Hrs.

Max. Marks: 60

- ✓ Answer both Section 'A' and 'B' in TWO Separate Answer Books.
- Answer ALL questions. Draw diagrams wherever necessary.

SECTION – A: ANATOMY: 40 MARKS

1. Name the parts of gastrointestinal system. Describe the stomach in detail.

(5+5 = 10 marks)

- 2. Write short notes on:
- 2A. Eyeball
- 2B. Kidney
- 2C. Right atrium
- 2D. Spinal cord
- 2E. Trachea
- 2F. Ovary

 $(5 \text{ marks} \times 6 = 30 \text{ marks})$

SECTION - B: PHYSIOLOGY: 20 MARKS

1. Essay questions:

- 1A. Define blood pressure and give its normal value. Explain the regulation of blood pressure by baroreceptor mechanism.
- 1B. Draw a neat labeled diagram of the neuromuscular junction. In the form of a flow chart describe the events that occur during neuromuscular transmission.

 $(5 \text{ marks} \times 2 = 10 \text{ marks})$

- 2. Write short answers for the following:
- 2A. List the four types of hypoxia
- 2B. Write two differences between simple diffusion and facilitated diffusion
- 2C. Mention the receptor for taste and smell
- 2D. Name four muscle proteins
- 2E. Define Landsteiner's law

 $(2 \text{ marks} \times 5 = 10 \text{ marks})$

Reg. No.	
----------	--

MANIPAL UNIVERSITY

FIRST SEMESTER M.Sc. (MEDICAL RADIATION PHYSICS) DEGREE EXAMINATION – JUNE 2016

SUBJECT: PAPER III: ELECTRONICS

Friday, June 17, 2016

Time: 10:00 - 13:00 Hrs.

Max. Marks: 80

- Answer ALL the questions.
- Any missing data may be assumed suitably.

PART - A

1. Answer the following:

- 1A. Differentiate active and passive elements with proper examples.
- 1B. Define Ohm's law and list the different types of distortion in amplifiers.
- 1C. Discuss the working of radiation thermometer.
- 1D. A germanium diode has a reverse saturation current of 3μA. Calculate the voltage at which 1% of the rated current will flow through the diode, at room temperature (27°C) if diode is rated at 1A.
- 1E. Write a short note inverting and non inverting configuration of an op-amp.
- 1F. With proper diagram explain the working of AC voltmeter.
- 1G. Differentiate voltage and power amplifiers.
- 1H. List and explain the different parameters of FET.

 $(5 \text{ marks} \times 8 = 40 \text{ marks})$

PART - B

2. **Answer the following:**

- 2A. Explain the working of piezoelectric force, strain and torque transducer.
- 2B. With proper circuit diagram and graphs explain input and output characteristics of transistor.
- 2C. Explain the working of transformer and RC coupling networks.
- 2D. With neat block diagram explain the working of microprocessor.
- 2E. Define cascading in amplifiers. Explain the working of differentiator using op-amp.

 $(8 \text{ marks} \times 5 = 40 \text{ marks})$

Reg. No.	
----------	--

MANIPAL UNIVERSITY

FIRST SEMESTER M.Sc. (MEDICAL RADIATION PHYSICS) DEGREE EXAMINATION – JUNE 2016

SUBJECT: PAPER IV: MODERN PHYSICS

Monday, June 20, 2016

Time: 10:00 - 13:00 Hrs.

Max. Marks: 80

Answer ALL questions.

Any missing data may be assumed suitably.

Physical Constants:

Speed of light in vacuum, $c = 3 \times 10^8$ m/s Plance

Planck's constant, $h = 6.626 \times 10^{-34} \text{ Js}$

Atomic mass unit, $u = 1.67 \times 10^{-27} \text{ kg}$ Electron mass, $m_e = 9.11 \times 10^{-31} \text{ kg}$

- 1A. Derive expressions for the De Broglie wavelength of an electron accelerated from rest through a potential of V volts considering both relativistic and non-relativistic cases.
- 1B. State and prove Ehrenfest's theorem.

(8+8 = 16 marks)

- 2A. Establish Schrodinger's equation for a particle in a potential well of infinite depth and solve it to obtain its energy levels.
- 2B. Using Heisenberg's uncertainty principle prove that electron is not a constituent the Atomic nucleus.
- 2C. What are 'eigen functions' and 'eigen values' of an operator? Verify which of the following functions:
 - i) $\sin 2x$
 - ii) 4 cos 4x are the eigen functions of the operator $P = (-d^2/dx^2)$? In each case state the eigen value.

(8+3+5 = 16 marks)

- 3A. Discuss the salient features of beta ray spectra and explain how Pauli's hypothesis of neutrino emission solved the anomalies in the beta ray spectra. State the properties of neutrino.
- 3B. What are mirror nuclei? Describe how the size of the nucleus can be determined using these types of nuclei.

(8+8 = 16 marks)

- 4A. Give Yukawa's Meson theory of nuclear force. Explain how it explains the anomalous magnetic moment of the nucleons.
- .4B. Describe the basic principles and operation of a Scintillation spectrometer. Explain its application to gamma ray spectrometry.

(8+8 = 16 marks)

- 5A. Explain the major effects which influence the binding energy of the nucleus in the liquid drop model and hence derive semi empirical binding energy formula.
- 5B. Obtain the expression for the Q value of a nuclear reaction. Classify the nuclear reactions based on their Q value.

(8+8 = 16 marks)