Question Paper

Exam Date & Time: 05-Jul-2024 (02:00 PM - 05:00 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

FIRST SEMESTER BSc. HEALTH SCIENCES DEGREE EXAMINATION - JULY 2024 SUBJECT: BHS-105 - PRE-CALCULUS (RETAKE - OLD SCHEME)

Marks: 75

Duration: 180 mins.

Answer all the questions.

Answer the following questions in short:

1A) If $f(x) = \sqrt{\chi}$ and $g(x) = \sqrt{2}$	$-\chi$, find the function f o g.	(2)
---	------------------------------------	-----

- 1B) Use the interval notation to list the values of X that satisfy the inequality for the following: (2) i) $2 \times -2 \ge 8$
 - **ii)**−3**x**+4<5
- 1C) Find the standard form of the equation of the circle (i) Center (0,2) and radius 3 (ii) Center (-1, -2) and (2) radius 2.

1D) If
$$f(\mathbf{x}) = 4\mathbf{x}^2 + 1$$
, find $f(2 + \sqrt{3})$ and $f(2\mathbf{x})$ (2)

1E) Solve for
$$\mathbf{x}$$
, given $(\log_{10} \mathbf{x})^2 - (\log_{10} \mathbf{x}) - 6 = 0$ (2)

1F) Find the distance between and midpoint of the line segments joining the points (2, 4) and (-1, 3). (2) 1G) Let $f(\mathbf{x}) = 2\mathbf{x} - 3$ and $g(\mathbf{x}) = \mathbf{x}^2 + 2$. Evaluate $g(g\left(-\frac{1}{2}\right))$. (2)

1H) Prove that
$$\frac{1}{1 + \cos A} + \frac{1}{1 - \cos A} = 2 \csc^2 A$$
. (2)

11) Solve the $\triangle A BC$ given that $a = 5, b = 5\sqrt{3}$ and c = 5. (2)

1J) Determine the value tan of 15°

1K)

(2)

Simplify
$$\left(\frac{35 \varkappa^3 \gamma^5}{63 \varkappa^{-4} \gamma^4}\right)^2$$
. (2)

1L)	Suppose Rs. 1000 is invested at 10% interest and the interest rate remains fixed for 8 years. Determine the value of the investment if the interest is compounded semiannually and quarterly.	(2)
1 M)	Using properties of logarithm solve $2 \times 3^{-\varkappa} = 2^{3\varkappa}$.	(2)
1N)	Determine the values of \mathbf{x} that satisfy the expression log 3 + log(2 \mathbf{x} - 1) = 2 log(\mathbf{x} + 1)	(2)

Answer the following questions in brief:

2A)	Use the quadratic formula to find the x - intercepts i) $y = 6 x^2 - 5 x + 1$ and ii)	(3)
	$y = 12 \mathbf{x}^2 + \mathbf{x} - 1.$	
2B)	Determine the equation of the parabola that satisfies the given condition for the following (i) Focus at (-2, 2), directrix $y= -2$ (ii) vertex at (-2, 2), directrix $x=2$ (iii) Vertex at (-2, 2), focus at (-2, 4).	(3)
2C)	Prove that $\sin 3_A = 3 \sin A - 4 \sin^3 A$.	(3)
2D)	If $\cos A = \frac{1}{7}$ and $\cos B = \frac{13}{14}$, where $_{A}$ and $_{B}$ are acute angle. Prove that $_{A} - B = \frac{\pi}{3}$.	(3)

Answer the following questions.

3A) Find the quotient $Q(\mathbf{x})$ and the reminder $R(\mathbf{x})$ when the polynomial $P(\mathbf{x})$ is divided by the (5) polynomial $D(\mathbf{x})$ for the following: i) $P(\mathbf{x}) = 3\mathbf{x}^2 - 2\mathbf{x} + 2$, $D(\mathbf{x}) = \mathbf{x} - 1$

$$ii) P(\mathbf{x}) = 3\mathbf{x}^{4} + 5\mathbf{x}^{3} - 5\mathbf{x}^{2} - 5\mathbf{x} + 2, D(\mathbf{x}) = \mathbf{x} - 1$$

If $\sin \alpha = -\frac{5}{13}$, $\sin \beta = \frac{7}{25}$ and $\pi < \alpha < \frac{3\pi}{2}$, $\frac{\pi}{2} < \beta < \pi$. Find $\cos(\alpha + \beta)$ and (5) $\sin(\alpha - \beta)$.

-----End-----