Question Paper

Exam Date & Time: 29-Jul-2024 (10:00 AM - 01:00 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

SECOND SEMESTER BSc HEALTH SCIENCES DEGREE EXAMINATION - JULY 2024 SUBJECT: BHS - 104 - CHEMISTRY II (OLD SCHEME)

Marks: 75

Duration: 180 mins.

Answer all the questions.

Answer the following in 2 or 3 sentences

1A)	Consider the chemical equilibrium: $2SO_2(g) + O_2(g) \leftrightarrow 2SO_3(g) \Delta H^\circ rxn = -196 kJ$. Explain the effect of varying the a) pressure and b) temperature for this equilibrium.	(2)
1B)	Ammonia is a commonly used cleaning agent in households and is a weak base, with a K _b of 1.8 x 10 ⁻⁵ . What is the pH of a 1.5 M NH ₃ solution?	(2)
1C)	Define buffer and write the Henderson-Hasselbalch equation for a conjugate acid base pair.	(2)
1D)	Define the following terms in phase diagram a) Regions of the diagram b) Lines between regions	(2)
1E)	Does hexane mix with octane? Why/why not?	(2)
1F)	Zn strips dipped in HCI produces more hydrogen gas than in CH $_3$ COOH. Give reason.	(2)
1G)	Write anodic and cathodic reaction in Zn-Cu voltaic cell.	(2)
1H)	What are the key factors that decide the spontaneity of a reaction?	(2)
11)	At elevated temperatures, solid silicon reacts with chlorine gas to form gaseous SiCl ₄ as per the equation, Si(s) + 2Cl ₂ (g) \leftrightarrow SiCl ₄ (g) When the reaction is started with 0.10 moles of Si and 0.20 moles of C ₂ I in a one liter flask, 0.050 moles of	(2)
	SiCl ₄ are obtained at equilibrium. Calculate the equilibrium constant, K_c .	
1J)	Explain the effect of physical state and temperature on S° value of the system.	(2)
1K)	Segregate the following acid/base into Bronsted-Lowry Acid and Base NH_3 , F -, HNO_3 , CO_3 2 - H_2 PO_4 -, and H_3 O+	(2)
1L)	Data: Δ <i>H</i> °f values: CH ₄ (g), -74.8 kJ; CO ₂ (g), -393.5 kJ; H ₂ O(<i>I</i>), -285.8 kJ. Using the ΔH° _f data above, calculate ΔH° _{rxn} for the reaction below.	(2)
	Reaction: $CH_4(g)$ + $2O_2(g) \rightarrow CO_2(g)$ + $2H_2O(I)$	
1M)	Give reason: Ice floats on the surface of water	(2)

1N)

- i) Molarity ii) Molality iii) Maga percent
- iii) Mass percentageiv) Volume percent
- 2. Write a short note on the following questions

2A)	Lead can displace silver from solution as follows: Pb(s) + 2Ag+(aq) \rightarrow Pb ²⁺ (aq) + 2Ag(s)	(3)
	Calculate K and ΔG^{o} at 298.15 K for this reaction.	
2B)	a) Distinguish i) specific heat capacity from molar heat capacity ii) Lewis acid from a Bronsted acid.	(3)
	b) For the reaction below, $CO(g) + NO(g) \rightarrow CO_2(g) + \frac{1}{2} N_2(g).$ Calculate the enthalpy change using the data given below. $CO(g) + \frac{1}{2} O_2(g) \rightarrow CO_2(g); \Delta H = -283.0 \text{ kJ}$	
	N ₂ (g) + O ₂ (g) \rightarrow 2NO(g); Δ H = 180.6 kJ	
2C)	i) lodine-123 is used to study thyroid gland function. This radioactive isotope breaks down in a first-order process with a half-life of 13.1 h. What is the rate constant for the process? ii) The reaction 2NOCI(g) \rightarrow 2NO(g) + Cl ₂ (g) has an E _a of 1.00 x 10 ² kJ/mol and a rate constant of 0.286 L/mols at 500 K. What is the rate constant at 490 K?	(3)
2D)	A voltaic cell houses the reaction between aqueous fluorine and zinc metal as follows: $F_{2}(aq) + Zn (s)$ gives $Zn^{2+}(aq) + 2F(aq)$; E ^o cell = 2.87 V	(3)

Calculate E° fluorine, given E° $_{zinc}$ = -0.76 V

3. Answer the following questions

- 3A) i) Calculate the heat change involved in converting 2.5mol of gaseous water from 130°C to 0°C. Given (5) c = 33.1 J/mol.°C, c = 75.4 J/mol.°C, ΔH vap = 40.7 kJ/mol, ΔH fus = 6.02 kJ/mol
 ii) Describe the variation of vapour pressure with temperature and intermolecular forces.
- 3B) i) Calculate the vapor pressure lowering, ΔP , when 10.0 mL of glycerol (C₃H₈0₃) is added to 500. mL of (5) water at 50°C. At this temperature, the vapor pressure of pure water is 92.5 torr and its density is 0.988 g/mL. The density of glycerol is 1.26 g/mL

ii) Salts from strong bases and weak acids give basic solutions. Give reason.