	Reg. No.					
MANIPAL UNIVERSITY FIRST MBBS DEGREE EXAMINATION – MAY/JUNE 2013						
	(OLD REGULATION) Monday, June 03, 2013					
Time	me: 10:20 – 13:00 Hrs. Maximum	Marks	: 40			
1.	Describe citric acid cycle. Why is it regarded as an amphibolic pathway?	. 1	-1)			
	(3+1 =	4 ma	rks)			
2.	Explain the formation, transport and disposal of ammonia in body.					
		(4 ma	irks)			
3.	Write the following aspects of tyrosine metabolism:					
3A.	. Synthesis					
3B.	3. Special products formed from tyrosine					
3C.	2. Phenylketonuria					
	(1+2+1 =	4 ma	irks)			
4.	Describe the following aspects of glycogenolysis:					
4A.	A. Reactions					
4B.	8. Regulation by covalent modification					
4C.	2. Type1 glycogen storage disorder					
	(2+1+1 =	• 4 ma	irks)			
5.	Discuss ketogenesis and utilization of ketone bodies. Add a note on ketosis.					
	(2+1+1 =	= 4 ma	arks)			
6.	Outline the reactions catalysed by the enzymes LCAT and pancreatic lipase. significance of these reactions.	Write	the			
	(1+1 =	= 2 ma	arks)			
7.	Define primary structure of a protein. Explain with an example, how alteration i structure may affect the function of that protein.	n prir	nary			
	변화가 물건에 있는 것이 같아요. 그는 것은 것은 것은 것을 많은 것이 같아요. 것이	(2 ma	arks)			

8. Explain the effect of the following on the velocity of enzyme catalysed reactions:

8A. pH

8B. Temperature

8C. Substrate concentration

9. Write notes on:

- 9A. Components of electron transport chain in sequence
- 9B. Definition and diagnostic utility of Isoenzymes
- 9C. Role of insulin in blood glucose regulation
- 9D. Structure and metabolism of LDL

10. Write the formation, fate and significance of:

10A. UDP-glucose

10B. Creatine

 $(1\frac{1}{2} \times 2 = 3 \text{ marks})$

 $(2 \times 4 = 8 \text{ marks})$

11. Give specific biochemical reasons for the following:

- 11A. Trypsin alone cannot complete the digestion of a protein
- 11B. Histidine residues in hemoglobin play a significant role in buffering
- 11C. Children with type I hyperlipoproteinemia can utilize medium chain triglycerides
- 11D. Glucose and galactose are epimers but glucose and fructose are not
- 11E. Congenital cataract is a feature of galactosemia
- 11F. Methotrexate is used in treatment of cancer

 $(\frac{1}{2} \times 6 = 3 \text{ marks})$

MANIPAL UNIVERSITY FIRST MBBS DEGREE EXAMINATION – MAY/JUNE 2013 SUBJECT: BIOCHEMISTRY– PAPER II (ESSAY)

(OLD REGULATION)

Tuesday, June 04, 2013

Time: 10:20 - 13:00 Hrs.

Maximum Marks: 40

1. Long answer questions:

- 1A. Explain translation. Add a note on post translational modifications.
- 1B. Describe chemistry, functions and mechanism of action of vitamin D. Add a note on deficiency symptoms.

((4+2)+(5+1) = 12 marks)

2. Short answer questions:

- 2A. Explain absorption and iron homeostasis.
- 2B. Catabolism of purine nucleotides and gout.
- 2C. Blood urea and creatinine estimation in the evaluation of kidney function .

((2+2)+(2+2)+4 = 12 marks)

3. Brief answer questions:

- 3A. Polymerase chain reaction
- 3B. Erythropoietic porphyrias
- 3C. Protein calorie malnutrition
- 3D. Recombinant proteins in medicine

 $(3 \times 4 = 12 \text{ marks})$

4. Give biochemical basis/reasons:

4A. During replication of DNA one strand is synthesized discontinuously as Okazaki fragments.

- 4B. ¹³¹I isotope could be used to locate thyroid tumour.
- 4C. Rate of respiration is high in uncontrolled diabetes mellitus patients.
- 4D. In vitamin B_{12} deficiency coenzyme function of folic acid is impaired.

 $(1 \times 4 = 4 \text{ marks})$

MANIPAL UNIVERSITY	
FIRST MBBS DEGREE EXAMINATION – MAY/ JUNE 2013	
SUBJECT: BIOCHEMISTRY– PAPER I (ESSAY) (NEW REGULATION)	

Monday, June 03, 2013

Reg. No.

Time: 10:20 - 13:00 Hrs.

Maximum Marks: 80

∠ Long answer questions:

- 1. A 60 yr old woman was referred to a hospital with history of chest pain. She was noted to have hypertension and her plasma cholesterol level was 410 mg/dl with an increase in the concentration of LDL. Angiogram demonstrated a narrowing of the right coronary artery.
- 1A. What is your probable diagnosis?
- 1B. What is the normal serum cholesterol level?
- 1C. Write a note on regulation of cholesterol synthesis and name two hypocholesterolemic drugs.
- 1D. Discuss the metabolism of the lipoprotein which has a protective role against this disorder.

(1+1+4+4 = 10 marks)

2. Discuss the metabolism of glycine under following headings:

- 2A. Synthesis and degradation
- 2B. Important products formed
- 2C. Associated defects

(3+5+2 = 10 marks)

& Short notes:

3A. Classify enzymes with one example for each class.

(4 marks)

3B. What are the features of competitive inhibition? Explain its clinical significance by giving two examples.

(2+2 = 4 marks)

3C. Serum of a 56 year old woman showed the following pattern when subjected to electrophoresis.

- i) What is your diagnosis?
- ii) Name the bands seen in the electrophoretogram.
- iii) Give the normal levels of serum total protein, albumin and globulins.
- iv) Name the protein that may be excreted in urine in the above condition.

 $(1 \times 4 = 4 \text{ marks})$

3D.	Describe the formation of ketone bodies.	(4 marks)	
3E.	Write a note on fatty liver and name any two lipotropic factors.	(3+1 = 4 marks)	
3F.	Name four radioisotopes and give their clinical applications.	(4 marks)	
3G.	Write the components of ETC in sequence. Indicate the ATP synthesizing sit	es. (3+1= 4 marks)	
3H.	Give reason:		
	i) Glucokinase cannot act on all hexoses		
	ii) Dicoumarol is used as an anticoagulant		
	iii) Polyuria is a feature of diabetes mellitus		
	iv) Muscle glycogen does not contribute to blood glucose		
		(4 marks)	
31.	Explain the secondary structure of proteins.	(1 marks)	
		(4 111/183)	
3J.	Give the reactions involved in the synthesis of		
	i) SAM		
	ii) Epinephrine		
		(2+2 = 4 marks)	
3K.	Write the oxidative steps of HMP shunt pathway and give its significance.		
		(3+1 = 4 marks)	
21	Define alugeneogenesis Give the key alugeneogenic reactions		
JL.	Denne gluconeogenesis. Give the key gluconeogenic reactions.	(1+3 = 4 marks)	
		(1+5 + marks)	
3M.	What is the normal fasting blood glucose level? How is it regulated?		
		(1+3 = 4 marks)	
3N.	Give four examples of heteropolysaccharides with their function.	(1 montro)	
		(4 marks)	
30	Give one example each for:		
	i) Group specificity of enzyme action		
	ii) Derived lipid		
	iii) Polyamine		

iv) Derivative of monosaccharide

(4 marks)

3E. Describe the steps of PCR with two diagnostic applications.

3F. Write briefly on:

- i) Any two tumor markers with a clinical condition causing elevation of each
- ii) Sickle cell anaemia

(2+2 = 4 marks)

(2+2 = 4 marks)

3G. Draw a neat labeled diagram of tRNA and add a note on post transcriptional modifications. (2+2 = 4 marks)

3H. Calculate the energy requirements for a 20 year old male student weighing 60kg. What is his daily protein requirement?

(3+1 = 4 marks)

3I. i) Mention the type of biotransformation observed below.

a) Ethanol — Acetic acid

- b) Atropine _____ Tropic Acid + Tropin
- ii) What is a limiting amino acid? How can it be compensated?

(2+2 = 4 marks)

(4 marks)

(4 marks)

3J. Explain the lac operon concept.

3K. Mention one biochemical application of each of the following:

- i) van den Bergh reaction ii) Creatinine clearance
- iii) Western Blot technique iv) BMI
- 3L. Write short notes on:
 - i) The Chargaff's rule

ii) Acute Intermittent porphyria

(2+2 = 4 marks)

3M. Give the key reaction of heme synthesis and one inhibitor for the same. Add a note on regulation of heme synthesis.

(2+2 = 4 marks)

3N. Discuss the metabolism of Iron under the following headings:
i) RDA in women ii) Absorption iii) Storage (1+2+1 = 4 marks)

- 30. Give the biochemical basis for each of the following:
 - i) VNTR's are of diagnostic importance
 - ii) Vitamin K deficiency is associated with elevated prothrombin time
 - iii) Diet rich in green leafy vegetables has cholesterol lowering effect
 - iv) There is an increased demand for thiamine in chronic alcoholics

(4 marks)

3E. Describe the steps of PCR with two diagnostic applications.

3F. Write briefly on:

- Any two tumor markers with a clinical condition causing elevation of each i)
- Sickle cell anaemia ii)

(2+2 = 4 marks)

(2+2 = 4 marks)

3G. Draw a neat labeled diagram of tRNA and add a note on post transcriptional modifications. (2+2 = 4 marks)

3H. Calculate the energy requirements for a 20 year old male student weighing 60kg. What is his daily protein requirement?

(3+1 = 4 marks)

- Mention the type of biotransformation observed below. 3I. i)
 - Ethanol ____ Acetic acid a)
 - Atropine _____ Tropic Acid + Tropin b)
 - What is a limiting amino acid? How can it be compensated? ii)
- (2+2 = 4 marks)

(4 marks)

(4 marks)

- Explain the lac operon concept. 3J.
- 3K. Mention one biochemical application of each of the following:
 - Creatinine clearance van den Bergh reaction ii) i) iv) BMI
 - iii) Western Blot technique
- 3L. Write short notes on: The Chargaff's rule i)
- ii) Acute Intermittent porphyria

(2+2 = 4 marks)

3M. Give the key reaction of heme synthesis and one inhibitor for the same. Add a note on regulation of heme synthesis.

(2+2 = 4 marks)

3N. Discuss the metabolism of Iron under the following headings: RDA in women Absorption iii) Storage ii) i)

(1+2+1 = 4 marks)

- 30. Give the biochemical basis for each of the following:
 - VNTR's are of diagnostic importance i)
 - Vitamin K deficiency is associated with elevated prothrombin time ii)
 - Diet rich in green leafy vegetables has cholesterol lowering effect iii)
 - There is an increased demand for thiamine in chronic alcoholics iv)

(4 marks)

####