Question Paper

Exam Date & Time: 01-Dec-2017 (09:30 AM - 12:30 PM)

MANIPAL UNIVERSITY

MANIPAL COLLEGE OF PHARMACEUTICAL SCIENCES **END SEMESTER THEORY EXAMINATIONS- NOVEMBER 2017** PROGRAM: BPHARM SEMESTER 1

DATE: 01/12/2017 TIME: 9:30AM - 12:30PM

Pharmaceutical Analysis-I [PQA-BP102T]

Duration: 180 mins. Marks: 75 I Multiple Choice Questions (MCQs)

		I Multiple Choice Questions (****4**)	20		
	Answer all t	he questions. Section Duration:			
	1)	Titration of I_2 against thiosulfate is a standard laboratory technique. In connection to the (1)			
		given statement identify the correct one. solutions of I_2 are prepared in I_2 is oxidized aqueous KI because I_2 is during the reduced during this tirration.			
		insoluble in water	(1)		
	2)	0.1M sodiumsulphate solution can be standardized using arsenic trioxide sodium carbonate potassium iodide potassium bromate			
	3)	If acidified Potassium Dichromate(VI) ($K_2Cr_2O_7$) acts as oxidizing agent, color changes from	(1)		
	4)	orange to red orange to green yellow to green yellow to red Calcium as calcium oxide determination of percentage purity by Cerimetric Complexometric Gravimetric Volumetric analysis analysis analysis	(1)		
	5)	Primary standard used to standardize the alkali methoxide in non aqueous titration <u>Benzoic</u> <u>Dimethyl</u> <u>Potassium</u> <u>Sodium</u> acid <u>formamide</u> <u>hydrogenphthalate</u> <u>carbonate</u>	(1)		
D)	6)	The formation of a second coloured precipitate at the end point in a precipitation titration Mohr's titration Volhard's titration Fajan's titrations Gay-Lussac Method			
	7)	Indicator used in estimation of sulfonamides Starch iodide paste Starch mucilage Potassium iodide solution Sodium nitrate	(1)		
	8)	The chemical used in making perchloric acid solution anhydrous <u>acetone</u> <u>acetic acid</u> <u>acetic anhydride</u> <u>mercuric acetate</u>	(1)		
	9)	The titrant employed in estimation of dapsone by diazotization titration Sodium nitrate sodium nitrite Sodium nitride Sodium oxide	(1)		
	10)	Calibration of apparatus is not required for the determination of percentage purity by <u>Cerimetric</u>	(1)		
	11)	Identify the analytical technique that is also an effective separation technique <u>Absorption spectroscopy</u> <u>Potentiometry</u> <u>Titrimetry</u> <u>Gas chromatography</u>	(1)		
	12)	Which of the following is not a primary standard <u>Potassiumhydrogen</u> <u>Sodium</u> <u>Sodium</u> <u>Oxalic</u> <u>phthalate</u> <u>carbonate</u> <u>hydroxide</u> <u>acid</u>	(1)		
	13)	What is the molarity of a solution of sodium chloride prepared by dissolving 1.47 g in 25 mL of water (t weight of Na= 23g; Cl-=35.5g) $0.5 \text{ M} \qquad 1 \text{ M} \qquad 2 \text{ M} \qquad 5 \text{ M}$			
	14)	How many significant figures are present in the number 0.000670	(1)		
	±¬1/		Page #:		

Page #1

/	6 7 2 3						
)) Which of the following statement is not true with respect to "constant errors' (1)						
	It is independent of the amount of substance beingThe relative magnitude of the constant error would increase with the decreasing quantity of the substance being measured	The relative magnitude of constant error would increase with the increasing quantity of the substance being analysed	Constant errors are also called as additive errors				
16)	The useful range for phenolphthalein indicator	is		(1)			
17)	4.4-6.2 6.2-8.0 8.0-10.0 10.0-7		lium hydroxida	. (1)			
17)	The pH at neutralization for the titration of 0.1 M acetic acid with 0.1 M sodium hydroxide (1) solution is 7.0 8.7 4.7 4.5						
The amount of disodium EDTA required to prepare 500 mL of 0.05 M solution is							
19)	The pH of 1 M hydrochloric acid solution is $10 1 0.1 0$			(1)			
20)	is the term used in EDTA titrations, for "the processes in which a substance is(1) so transformed that it does not enter into a particular reaction" Complexation						
	II Long Ansv	vers					
	he questions.			(1.0)			
1)	What is Iodometry? explain with suitable example. Explain iodate (10) titrations with suitable example.						
2)	Write in detail about the types of errors and any five approaches to (10 minimize these errors) (10)			
III Short Answers							
Answer all the questions.							
1)	Explain the principle for the estimate bases by non-aqueous titration with		salts of	(5)			
2)	What are argentometric titrations? Classify its detection of end point methods with example. (5)						
3)	What is Gravimetric analysis? Enlist its steps and applications. (5)						
4) Explain the end point detection in diazotization titration using				(5)			
	external indicator and in argentometric titration using adsorption indicator.						
5)	Explain the preparation and standardization of 0.1 M NaOH solution			(5)			
6)	Explain the ionic-chromophoric theory of indicators (5)						
7)	a) Write the principle of complexor example.			(5)			
 b) Briefly discuss the types of complexometric titrations 							