Exam Date & Time: 18-Jul-2022 (10:00 AM - 01:00 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

Computer Aided Drug Design [PCH-BP807ET-S2]

		Comp	atti	AII	aca Drug D	coig.	ա [յ	CII-DI 007	11.2 T	U.	ı	**		400	
Marks: 75												Du	uration:	180	mins.
			IM	ulti	iple Choice	Que	sti	ons (MCQs))						
Answer all	the qu	estions.									Sec	tion	Duration	a: 30	mins
1)	Which of the following statement is not true in identifying a drug target														
	1)	hitting a target toward the end of a pathway (downstream) causes fewer side effects		2)	hitting a target toward the beginning of a pathway (upstream) causes fewer side effects		3)	Identifying gencs whose expression is up- or down-regulated in the disease state		4)	ove of a gen	rex a spo ie in ima	n or pression ecific n vivo ls		(1)
					enecis										l
2)	Surf	ace Plasmon ro	eson	anc	e for screeni	ng l	iga	nds involves	3						
	$\left 1\right)\left ^{i}_{\epsilon}\right $	Reduction n emission of light	2)	re	hange in fractive dex	3)	o to m sl	Relaxation ting f ligands boton a hacromolecum horter than when are unboton till a second sec	und ile a vhei	re		4)	None of the above		(1)
3)	Whi	ch of the follow	ving	is	not a "Rule o	of Fi	ve'	(Ro5) for d	lrug	-lik	enes	s fi	lter		
	1) t	molecular weight less han 500 Da	2)	hy be de	umber of ydrogen ond onors qual or ess than 5		3)	number of hydrogen bond acceptors less than 10			4) $\begin{vmatrix} I \\ r \end{vmatrix}$	og	ulated P e than		(1)
4)	Wha	t is an allosteri	c inl	hibi	itor?			migal .	1						
	1) tl	inhibitor nimics he ubstrate,	2)	do mi the	nibitor es not mics	3)	w bi	abstrate hich ands to be	4)	bin en fre	nds i zym om t	to the average to the deciding			(1)

	for the active site competing for the active site site conformation receptor/enzyme	
5)	What is the upper Polar Surface Area threshold value for oral absorption of a drug	
	1) 80-90 Å2 2) 90-100 Å2 3) 140-150 Å 4) 250-60 Å2	(1)
6)	In which of the following cases pharmacophore based approach for virtual screening can be used	
	When structure of target protein and structure of active ligands against that target is known When structure of target protein is unknown and structure of active ligands is unknown When structure of target protein is known and structure of active ligands is unknown When structure of target protein is known and structure of active ligands is unknown All of the above	(1)
7)	Which of the following is not a method used for conformational analysis	
	Systematic Random Scaffold Simulated annealing/Molecular dynamics	(1)
8)	. π-substituent hydrophobicity constant is	
	Measure of how hydrophobic substituent is relative to Hydrogen 2) Measure of hydrophobic substituted chemical species. Measure of hydrophobic how hydrophobic a Hydrogen is relative to substitution substituted molecule	(1)
9)	What does a negative value of σ signify for a substituent?	
	It is electron withdrawing 2) It is electron donating 3) It is hydrophobic 4	(1)
10)	What does MR represent in a QSAR equation?	
	Molar refractivity is an electronic factor Molar refractivity is a hydrophobic factor Molar refractivity is a steric factor Molar refractivity is a steric factor Molar refractivity is a steric factor	(1)
11)	What does the symbol P represent in a QSAR equation?	(1)

	1) pH 2) Plasma Concentration 3) Partition coefficient 4) None of the above	
12)	Following is an electronic parameter in QSAR	,
	Dipole Verloop 3) Mol Molecular Weight A Molecular Molecular Neight A Molecular Neight Neigh Neigh	(1)
13)	One of the following is not used in QSAR	
	Molecular connectivity index 2) Molecular similarity index 3) Topological polar surface area 4) Partition coefficient	(1)
14)	The most common program for structure drawing is	l
	1) Dragon 2) CORINA 3) UNIPROT 4) FT map	(1)
15)	A simple molecular mechanics energy equation is given by the sum of	
	Stretching Energy + Bending Energy +Torsion Energy + Non- Bonded interaction energy Stretching Energy + Horsion Energy + Non- Bonded interaction energy Bending Energy + Horsion Energy + Non- Bonded Interaction Energy	(1)
16)	Software used to detect presence or absence of water molecule is:	
	1) GLIDE 2) H++ 3) PHASE 4) JAWS	(1)
17)	Chemoinformatics mainly deals with approaches employed for the following:	
	Chemical, Biological and 1) Biochemical data base concept Chemical and Biological database concept Chemical and 3) Chemical database concept Chemical database concept Biochemical and 4) Chemical database concept concept	(1)
18)	The biggest challenges (protein folding problems) of structural bioinformatics reside in prediction of	
	Secondary structure from primary structure 2) Fretiary structure from Primary structure structure 3) Fortiary structure from secondary structure structure 4) Quaternary structure from secondary structure structure	(1)

19)	Roothan Hall equation follows									
		Born oppenheimer and Hartree Fock approximation 2) LCAO and Born oppenheimer approximation LCAO and Hartree Fock approximation 3) LCAO and Hartree Fock approximation 4) LCAO, Born oppenheimer and Hartree Fock approximation	(1)								
20)	MM1 force field is applied only to									
		1) Saccharides 2) Hydrocarbons 3) Nucleotides 4) Proteins	(1)								
		II Long Answers									
Ar	iswer all tl	he questions.									
1)		Enlist the various methods used for lead discovery and add a note on lead optimization	(5)								
	A)										
	B)	Explain Lead discovery from existing drugs and serendipity with suitable examples	(5)								
2)		Mention the software used in drug discovery program. Enlist various chemical databases	(5)								
	A)										
	B)	Explain the importance of HTS and Combinatorial chemistry in new Drug discovery	(3)								
	C)	How is bioinformatics useful in new drug discovery program?	(2)								
		III Short Answers									
An	swer all th	ne questions.									
1)		What are the situations/types for pharmacophore search? Explain divide and conquer ligand build up strategies for in situ De novo drug design	(5)								
2)		Explain in various stages of protein-ligand docking									
3)		What is Force field? Mention its relevance in molecular mechanics									
			(2)								
	A)										
		Mention the various Force field softwares used along with their applications and list out 3 methods of conformation generations and explain any one of them									
4)		Explain the principles and applications of Quantum mechanics									
	A)		(2)								
	A) B)	What is a pharmacophore? Discuss the importance of pharmacophore concept	(3)								
5)		Explain the parabolic relation between LogP and log 1/C with the help of a graph and write the equation for the parabolic relation.									
6)	,	Taking the example of benzoic acid and its derivatives explain π substituent constant	(5)								

as a parameter in QSAR

7) Explain a case study where alteration of physicochemical properties resulted by bioisosteric replacement

(5)

----End-----