Exam Date & Time: 14-Jun-2019 (09:30 AM - 12:30 PM)

Dilatant system

MANIPAL ACADEMY OF HIGHER EDUCATION

BPharm Semester IV End Semester Examination June 2019 PCE-BP403T: Physical Pharmaceutics II (Theory) Date: 14 June 2019

	PCE-BP403T: Physical Pharmaceutics II (Theory) Date: 14 June 2019	
	Physical Pharmaceutics-II [PCE-BP403T]	
Marks: 75		Duration: 180 mins.
	I Multiple Choice Questions (MCQs)	
	ne questions.	Section Duration: 30 mins
1)	Answer ALL questions. Surfactant solutions are termed as association colloids when their concentrations are	(1)
1)	Surfactant solutions are termed as association conous when their concentrations are	(1)
	Insufficient to saturate the bulk phase	
	Insufficient to saturate the interface	
	Less than critical micellar concentration	
	More than critical micellar concentration	
2)	Apparent viscosity for non-Newtonian fluid is	(1)
	Constant	
	Depends on shear rate	
	Depends on viscometer	
	<u>Depends on shear</u> <u>stress</u>	
3)	Kinematic viscosity is	(1)
0	1/Absolute viscosity	
	1/ (fluidity x density)	
	1/ fluidity	
	1/ shear rate	
4)	Falling sphere viscometer can measure the viscosity over a range of	(1)
	0.5 to 2,00,000 poise	
	0.5 to 2,00,000 milli poise	
	0.5 to 2,000 poise	
	0.5 to 2,000 milli poise	
5)	Flow behaviour of dilute flocculated suspension represent	(1)
	Newtonian system	
	Plastic system	
	Pseudo-plastic system	

6)	obey the Stoke's law of sedimentation.	(1)
	Dilute and flocculated dispersions	
	Concentrated and flocculated dispersions	
	Concentrated and deflocculated dispersions	
	Dilute and deflocculated dispersions	
7)	Polymers are used in the formulation ofsuspension.	(1)
	<u>Deflocculated</u>	
	<u>Flocculated</u>	
	Flocculated and deflocculated	
	None of the above	
8)	Vanishing cream is an example for	(1)
	O/W emulsion	
	W/O emulsion	
	Multiple emulsion	
	Suspension	
9)	Creaming in emulsion can be controlled by regulating	(1)
	Density of dispersed phase	
	Density of dispersion medium	
	Globule size	
	Volume of dispersion medium	
10)	flow behaviour is shown by pharmaceutical Lotions	(1)
	Plastic	(f)
	Pseudo-plastic	
	Newtonian	
	Dilatant	
11)	Which diameter is important for the development of emulsions and suspensions?	(1)
	Projected diameter	
	Stoke's diameter	
	Sieve diameter	
	Surface diameter	
12)	Polydisperse powders are the powders having	(1)
	Same size of particles	
	Same volume of particles	
	Different size of particles	
	Different volume of particles	
13)		(1)
10)	is a diameter of a circle with the same area as that of particle observed to the surface on which the particles rest.	(1)

	Projected diameter	
	Surface diameter	
	Sieve diameter	
	Feret diameter	
	In which type of flow of powder addition of glidant is preferable	(1)
	Excellent flow	
	Good flow	
	Passable flow	
	Very poor flow	
15)	Gas displacement method is used for the determination of	(1)
	True density of porous powder	
7	True density of non-porous powder	
	Both A and B	
	None of the above	
16)	The units of first order rate constant is	(1)
	Moles Liter-1 Min-1	
	<u>Liter Moles⁻¹Min⁻¹</u>	
	Moles Liter ⁻¹	
	Min ⁻¹	
17)	lonic reactions are in solutions and reactions between covalent molecules are	(1)
	Fast, slow	
0	Slow, fast	
	Fast, fast	
	Slow, slow	
18)	Catalyst is a substance	(1)
	Which controls the rate of reaction with partial change	
	Which changes the rate of reaction with itself completely undergoing a permanent chemical change	
	Which controls the rate of reaction without itself undergoing a permanent chemical change	
	None of the above	
19)	During storage, crystal growth is observed in suspension due to	(1)
	Absorption of water	
	Fluctuation in the ambient temperature	
	Presence of suspending agent	
	Volatilization of solids	

20)	Which of the following expression is correct for the determination of shelf-life for a first order decomposition?	(1)
	<u>t_{1/2} =</u> <u>0.105/K</u>	
	$t_{90} = 0.105/K$	
	$t_{90} = 0.693/K$	
	<u>t_{1/2} =</u> <u>0.693/K</u>	
	Il Long Answers	
Answer all the		(4.0)
1)	Explain the thixotropy measurement for plastic fluid at 'constant rate' and 'varying rate' of shear.	(10)
2)	Explain in detail the coulter counter method for determination of particles volume.	(10)
	III Short Answers	
Answer all the		
1)	Write any five salient features of lyophobic colloids.	(5)
2)	Discuss on surfactant as an emulsifier.	(5)
3)	Write short note on wetting agent in the dispersion of solids in water.	(5)
4)	Discuss on different factors affecting the viscosity of a liquid.	(5)
5)	Explain DLVO theory with potential energy versus particle distance curve.	(5)
6)	Deduce the units for specific zero order rate constant.	(5)
7)	Explain effect of hydrolysis on the stability of drugs with their preventive methods.	(5)

----End-----