End Semester Theory Examination MCQs- PCE-BP604T

* This form will record your name, please fill your name.	
1. In one compartment open model the term open indi (1 Point)	cates input and output is :
○ Bidirectional	
Unidirectional	
None of the above	
○ Non-directional	
2. Unit for tissue perfusion rate is (1 Point)	
2. Volume/ volume	ė.
3. Volume/ weight/ time	
1. Volume/ time	
4. Volume/ time/ volume	

3	3. Rate of drug excretion by kidney is calculated as	
	2. Rate of filtration + Rate of secretion – Rate of reabsorption	
	1. Rate of filtration – Rate of secretion – Rate of reabsorption	
	4. Rate of filtration – Rate of secretion + Rate of reabsorption	
	3. Rate of filtration + Rate of secretion + Rate of reabsorption	
4	1. Time required to reach steady state is determined by (1 Point)	
	Absorptionrate constant	
	Elimination rate constant	
	○ AII	
	Oistribution rate constant	
5	5. Non linear Pharmacokinetics is also callled as (1 Point)	
	All of the above	(
	Capacity limited	
	Mixed order	
	Saturated kinetics	

	6. In Michaelis- Menten equation,when the value of Km = C (1 Point)
	The rate of process is half the maximum rate
	The rate of process is double the maximum rate
	The elimination of most drugs follows first order kinetics
	The elimination of most drugs follows zero order kinetics
-	7. Thebioavailability of a drug from various dosage forms increases in the following order
	(1 Point)
	1. Capsules - Coated tablets - Enteric coated tablets - Sustained release tablets
	2. Coated tablets - Solutions - Sustained release tablets - Capsules -
	3. Tablets - Capsules - Suspensions - Solutions
	4. Solutions - Emulsions - Suspensions - Capsules
8	3. When the parent compound and/or its metabolites induce physiological changes in the animal that can alter thebioavailability of the product administered in Period 2, the bioequivalence study design to be followed is (1 Point)
	3. Parallel study design
	1. Crossover study design
	4. Sequential study design
	2. Replicate study design

	(1 Point)	
	4. Two or more drug products contain the same labelled chemical substance giving a different therapeutic effect	
	3. Two or more drug products contain different labelled chemical substance giving the same therapeutic effect	٠
	Two or more drug products contain the same labelled chemical substance in the same amount	
	2. Two or more drug products contain the same labelled chemical substance in different quantity	
1(0. Nature of absorption for acidic drugs with pKa >8 in GI tractis as follows;(1 Point)	
	1. Poor absorption	
	3. Absorption only in intestine	
	4. Rapid and independent of GI pH	
	2. Absorption only in stomach	
11	In a two compartment model which organ comprises the central compartment? (1 Point)	6
	Adipose	
	C Liver	
	Skin	
	○ Muscles	

	Fick's law equation for diffusion, dQ/dt= [DA K m/w(CGIT – C)]/ h, A represents Point)
\circ	4. Surface area of the dissolving solid
\circ	2. Surface area of the absorbing membrane
\bigcirc	1. Surface area of the drug particle
\circ	3. Surface area of the stagnant layer
СО	ugs havinghalf-lives take a shorter time to reach steady state plasma ncentration Point)
0	Intermediate
\circ	Shorter
\circ	None of the above
0	Longer
	nich of the following is a correct statementabout Non linear Pharmacokinetics? Point)
0	The plasma drug concentration changes either more or less than would be expected from a change in dose rate.
\circ	The pharmacokinetic parameters of a drug willnot change when multiple doses of drug are administered.
\circ	All of the above
	The graph of the relationship between dose and blood plasma concentration gives a straight line

15	i. The in vitro dissolutionrate constant is compared with in vivo absorption rate constant indicatesin vitro in vivo correlation level. (1 Point)	
	○ 4. Level B	
	2. Level D	
	1. Level C	
	3. Level A	
16	. Which approach is based on the Statistical Moment Theory? (1 Point)	6
	Two Compartment	
	One Compartment	
	O Non Compartment	
	Multi Compartment	
17.	Cyclodextrins improve the solubility of hydrophobic drugs byformation of	
	2. Molecular dispersion	15
	1. Inclusion complexes	
	3. Micelle with hydrophobic core	
	4. In situ salt	

18. BCS class drugs show poor absorption in GI tract (1 Point)
3. Class IV
1. Class II
2. Class I
4. Class III
19. In a two compartment model $C = Ae^{-at} + Be^{-bt}$, the term 'a' represents (1 Point)
None
O Distribution phase
Elimination phase
Absorption phase
20. Reason for caking in cortisone acetate suspension during storageperiod is (1 Point)
4. Change from low to high energy state
3. Change of amorphous to crystalline form
1. Polymorphic change
2. Change in crystallinity

BPharm Semester VI End Semester Examination July 2021

PCE-BP604T: Biopharmaceutics and Pharmacokinetics (Theory)

Date:30.07.2021

Duration: 2 hrs

Max. Marks 50

Instructions: Answer ALL questions.

II	II Short Answers $6 \text{ Q} \times 5 \text{ marks} = 30 \text{ marks}$	
Qı	Question	
1.	Briefly explain carrier mediated absorption and its characteristics. Name two types of carrier mediated absorption process and mention the major difference between them.	MLR
2.	Write short note on measurement of bioavailability by urinary excretion studies.	MLR
3.	What is the importance of the pharmacokinetic parameters (i) half-life (ii) volume of distribution and (iii)AUC?	SL
4.	Write <u>two</u> differences between one compartment and two compartment open model. Highlight the advantages and disadvantages of physiological pharmacokinetic model.(2+3)	SL
5.	Explain the measures taken for scheduling of multiple dosage regimen.	SL
6.	Describe the importance of non-linear pharmacokinetics with suitable examples.	SL