PQA-BP701T

Exam Date & Time: 27-Dec-2021 (10:00 AM - 01:00 PM)



## MANIPAL ACADEMY OF HIGHER EDUCATION

VII Semester BPharm - End semester Theory Examinations - Dec 2021

PQA BP701T: INSTRUMENTAL METHODS OF ANALYSIS (Theory)

Instrumental Methods of Analysis [PQA-BP701T]

Marks: 75

**Duration: 180 mins.** 

(1)

(1)

I Multiple Choice Questions (MCQs)

## Answer all the questions.

Section Duration: 30 mins

1) Which one of the following lamps mostly emits intense ultraviolet light?

|    |                             |    |                         |    |                  |    |                  | . (1) |  |
|----|-----------------------------|----|-------------------------|----|------------------|----|------------------|-------|--|
| 1) | Deuterium discharge<br>lamp | 2) | Xenon Discharge<br>lamp | 3) | Tungsten<br>lamp | 4) | Nernst<br>glower | (1)   |  |

2) Which one of the following causes hypochromic shift?

| 1) | Introduction of auxochrome | 2) | Distortion of geometry | 3) | Removal of conjugation | 4) | Change of solvent | (1) |
|----|----------------------------|----|------------------------|----|------------------------|----|-------------------|-----|
|    |                            |    | 8                      |    | J - 8                  |    |                   |     |

## 3) Which one of the following is true deviation?



4) What is the absorbance value, when intensity of incident light is 100 and transmitted light is 10?

5) Which one of the following statements is incorrect?

| 1) | Intensity of    | 2) | absorbance   | 3) | intensity of a beam | 4) | absorption  |  |
|----|-----------------|----|--------------|----|---------------------|----|-------------|--|
|    | monochromatic   |    | is           |    | of monochromatic    |    | of light is |  |
|    | light decreases |    | proportional |    | light increases     |    | directly    |  |

PQA-BP701T

|     | exponentially as it<br>passes through a<br>medium of<br>homogeneous<br>thicknessto the<br>the<br>(pathlength)exponentially as<br>the concentration<br>of the absorbing<br>substancesproportional<br>to the path<br>length of<br>the sample<br>of substance<br>arithmetically                                                                                                                                                                                       |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6)  | Which of the following is the working principle of Bolometer?                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | Peltier<br>effect2)Expansion<br>of inert gas3)Change in charge<br>distribution of pyroelectric<br>material4)Change in<br>resistance with<br>temperature(1)                                                                                                                                                                                                                                                                                                         |
| 7)  | Complex mixture in paper chromatography are separated by development technique.                                                                                                                                                                                                                                                                                                                                                                                    |
|     | 1) Ascending       2) Descending       3) Radial       4) Two dimensional       (1)                                                                                                                                                                                                                                                                                                                                                                                |
| 8)  | reagent is used to detect amino acids in chromatography.                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | 1) Dragendroff's2) Ninhydrin3) Bratten Marshall4) Phenolphthalein                                                                                                                                                                                                                                                                                                                                                                                                  |
| 9)  | Tailing and fronting in chromatographic peaks are predominantly due to                                                                                                                                                                                                                                                                                                                                                                                             |
|     | Variation in<br>distribution<br>constant2)Diffusion coefficient<br>of mobile phase3)Retention<br>factor4)Diameter of<br>packing<br>material(1)                                                                                                                                                                                                                                                                                                                     |
| 10) | Band Broadening in chromatography may be due to                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | 1)Eddy<br>diffusion2)Longitudinal<br>diffusion3)Resistance<br>to mass<br>transfer4)All<br>the<br>above(1)                                                                                                                                                                                                                                                                                                                                                          |
| 11) | Which of the following carrier gas is not used in Gas Chromatography?                                                                                                                                                                                                                                                                                                                                                                                              |
|     | 1) Nitrogen       2) Oxygen       3) Hydrogen       4) Helium       (1)                                                                                                                                                                                                                                                                                                                                                                                            |
| 12) | Principle of electrochemical detector (ECD) depends on                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | $ \begin{array}{ c c c c c c } \hline 1 & Ionization ability of \beta \\ radiation to ionize the Helium gas \end{array} \begin{array}{ c c c c } \hline 2 & Ionization of \\ electronegative \\ compounds \end{array} \begin{array}{ c c c } \hline 3 & Thermal \\ conductivity \\ of carrier \\ gas \end{array} \begin{array}{ c c } \hline 4 & Temperature \\ of the hot \\ wire \\ filament \end{array} \begin{array}{ c } \hline 1 \end{pmatrix} \end{array} $ |
| 13) | Principle of PTGC in Gas Chromatography is based on the principle that: (1)                                                                                                                                                                                                                                                                                                                                                                                        |

14)

15)

16)

17)

18)

19)

PQA-BP701T

| 1)                | As the tempera<br>of the column<br>increases, analy<br>comes to the va<br>phase easily<br>resulting in red<br>retention time.           | ture<br>ytes<br>apou | r                 | 2)                                                             | As per the<br>clapyron e<br>as the temp<br>increases,<br>vapour pre<br>decreases r<br>in reduced<br>time. | Clasius<br>quation,<br>perature<br>the<br>essure<br>resulting<br>retention                  |                                                             | 3)                                                              | As the<br>temperature<br>increases,<br>the polarity<br>of the<br>column<br>increases. |          | 4)                                      | As the<br>temperature<br>increases,<br>the non<br>polarity<br>increases.                          |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------|----------|-----------------------------------------|---------------------------------------------------------------------------------------------------|--|
| Hig               | h performance                                                                                                                           | in H                 | PLC               | is acl                                                         | nieved by                                                                                                 |                                                                                             |                                                             |                                                                 |                                                                                       |          |                                         | <u> </u>                                                                                          |  |
| 1)                | Use of<br>reusable<br>column                                                                                                            |                      | 2)                | Use o<br>sized                                                 | f smaller pa<br>stationary p                                                                              | article<br>bhase                                                                            |                                                             | 3)                                                              | Use of<br>longer<br>column                                                            |          | 4)                                      | Use of<br>multiple<br>detectors                                                                   |  |
| Wh                | ich of the follow                                                                                                                       | wing                 | is ar             | n exar                                                         | nple for a n                                                                                              | on-polar                                                                                    | station                                                     | nary                                                            | y phase used i                                                                        | n HI     | PLC                                     | ?                                                                                                 |  |
| 1)                | Octa decyl silar<br>column                                                                                                              | ne                   |                   |                                                                | 2) Silica<br>column                                                                                       |                                                                                             | 3)                                                          | Alu<br>colu                                                     | mina<br>1mn                                                                           |          | 4)                                      | Amine<br>column                                                                                   |  |
| Wh                | ich of the follow                                                                                                                       | wing                 | HPI               | .C de                                                          | tector is an                                                                                              | example                                                                                     | of 'bu                                                      | lk p                                                            | roperty detec                                                                         | tor"     | 2                                       |                                                                                                   |  |
| 1)                | UV-Visible<br>detector                                                                                                                  |                      | 2)                | Fluo1<br>detec                                                 | rescence<br>tor                                                                                           | 3)                                                                                          | Electr<br>detect                                            | och<br>or                                                       | emical                                                                                | 4)       | Refi<br>dete                            | ractive index                                                                                     |  |
|                   | uich of the follow                                                                                                                      | ving                 | is no             | ot true                                                        | of an elect                                                                                               | rochemic                                                                                    |                                                             |                                                                 | •                                                                                     | <u> </u> |                                         | •                                                                                                 |  |
| Wh                | lien of the follow                                                                                                                      | U                    |                   |                                                                |                                                                                                           |                                                                                             | al cel                                                      | 1?                                                              |                                                                                       |          |                                         |                                                                                                   |  |
| Wh 1)             | Electrode at<br>which the<br>reduction takes<br>place is the<br>cathode.                                                                |                      | 2)                | A co<br>circ<br>take<br>elec<br>reac                           | ell at closed<br>uit will not<br>part in<br>trochemica                                                    | 1                                                                                           | al cel<br>K(<br>the<br>to<br>bo<br>po                       | l?<br>Cl is<br>sal<br>redu<br>und<br>tent                       | used as<br>t bridge<br>uce the<br>ary<br>ial.                                         | 4)       | SH<br>the<br>elec<br>elec<br>pot        | E is always<br>left hand<br>ctrode while<br>asuring the<br>ctrode<br>ential.                      |  |
| Wh 1) Prin        | Electrode at<br>which the<br>reduction takes<br>place is the<br>cathode.                                                                | tative               | 2)<br>e ana       | A co<br>circ<br>take<br>elec<br>reac                           | ell at closed<br>uit will not<br>part in<br>trochemica<br>tion.<br>using poten                            | 1<br>1<br>Itiometry                                                                         | al cel<br>K(<br>the<br>bo<br>po<br>is bas                   | l?<br>Cl is<br>e sal<br>redu<br>und<br>tent<br>ed c             | used as<br>t bridge<br>uce the<br>ary<br>ial.                                         | 4)       | SH<br>the<br>elec<br>mea<br>elec<br>pot | E is always<br>left hand<br>ctrode while<br>asuring the<br>ctrode<br>ential.                      |  |
| Wh 1) Prin 1)     | Electrode at<br>which the<br>reduction takes<br>place is the<br>cathode.<br>nciple of quantit<br>Nernst<br>equation                     |                      | 2)<br>e ana<br>2) | A co<br>circ<br>take<br>elec<br>reac<br>lysis                  | ell at closed<br>uit will not<br>part in<br>trochemica<br>tion.<br>using poten<br>vik<br>tion             | 1<br>1<br>tiometry<br>3)                                                                    | al cel<br>K(<br>the<br>bo<br>po<br>is bas<br>Beer-<br>equat | l?<br>Cl is<br>sal<br>redu<br>und<br>tent<br>ed c<br>lam        | used as<br>t bridge<br>uce the<br>ary<br>ial.<br>on                                   | 4)       | SH<br>the<br>elec<br>elec<br>pot        | E is always<br>left hand<br>ctrode while<br>asuring the<br>ctrode<br>ential.<br>Kirckoff's<br>law |  |
| Wh 1) Prin 1) Pot | Electrode at<br>which the<br>reduction takes<br>place is the<br>cathode.<br>nciple of quantit<br>Nernst<br>equation<br>ential of SHE is |                      | 2)<br>e ana<br>2) | A co<br>circ<br>take<br>elec<br>reac<br>lysis<br>Illko<br>equa | ell at closed<br>uit will not<br>part in<br>trochemica<br>tion.<br>using poten<br>vik<br>tion             | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | al cel<br>K(<br>the<br>bo<br>po<br>is bas<br>Beer-<br>equat | l?<br>Cl is<br>sal<br>redu<br>und<br>tent<br>ed c<br>lam<br>ion | o used as<br>t bridge<br>uce the<br>ary<br>ial.<br>on                                 | 4)       | SH<br>the<br>elec<br>pot                | E is always<br>left hand<br>ctrode while<br>asuring the<br>ctrode<br>ential.<br>Kirckoff's<br>law |  |

PQA-BP701T

Conducting power of all the ions produced by one mole of the electrolyte in a given solution is called as:

| <sup>1)</sup> conductance <sup>2)</sup> conductance <sup>3)</sup> conductance <sup>4)</sup> infinite dilution | conductance conductance infinite diffution | 1) | Specific conductance | 2) | Equivalent conductance |  | 3) | Molar<br>conductance |  | 4) | Molar conductance at infinite dilution |  |
|---------------------------------------------------------------------------------------------------------------|--------------------------------------------|----|----------------------|----|------------------------|--|----|----------------------|--|----|----------------------------------------|--|
|---------------------------------------------------------------------------------------------------------------|--------------------------------------------|----|----------------------|----|------------------------|--|----|----------------------|--|----|----------------------------------------|--|

II Long Answers

## Answer all the questions.

| 1)           | <ul><li>a. Explain any two instruments that follow elastic scattering. (5M)</li><li>b. Explain the background correction technique used when atoms at electronic energy level split resulting several absorption lines. (5M)</li></ul> | (10) |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 2)           | With the help of suitable chromatograms, compare the advantages of PTGC operation over isothermal operation.                                                                                                                           | (10) |
|              | III Short Answers                                                                                                                                                                                                                      |      |
| Answer all t | he questions.                                                                                                                                                                                                                          |      |
| 1)           | If intensity of the incident light is Io, intensity transmitted light is I and Absorbance is negative log of Transmittance. Derive Beer-lambert's Law.                                                                                 | (5)  |
| 2)           | Explain the effect of following factors on fluorescence intensity with example:<br>a. Effect of electron donating group & withdrawing group<br>b. Effect of temperature and viscosity                                                  | (5)  |
| 3)           | Explain the relevance of Hooke's law in Infrared spectroscopy. (2.5 M) Explain the fundamental vibrations of a methylene group (CH2). (2.5 M)                                                                                          | (5)  |
| 4)           | Explain the principle behind column chromatography and enlist the steps involved in developing column chromatography.                                                                                                                  | (5)  |
| 5)           | Explain band broadening by Van Deemter Equation.                                                                                                                                                                                       | (5)  |
| 6)           | Discuss the types of currents in polarography. Analyse the significance of these currents in polarography.                                                                                                                             | (5)  |
| 7)           | Construct an indicator electrode for pH meter and discuss the principle of the same.                                                                                                                                                   | (5)  |

-----End-----