तानं ब्रह्म Second Second Inted By Life		Reg. No. CNAL CENTRE I (Manipal Ur B.S. DEGREE EX CAL ENGINEERING (BRANCH: CH FRIDAY, 17 th J	iversi XAMI 5 THE EMICA	ity) INAT (RMO (L)	ION	– JI	UNE	E 20	16	2)	
Time:	3 Hours						Max	x. Ma	arks:	: 100	1
\checkmark	Answer ANY FIVE Missing data, if any,	•	med a	and the	e same	e pro	perly	y ind	licate	ed.	
1A.		characteristics of an i case of an ideal gas	0				-				10
1B.	pressure	g equations of state: uations in terms of v Kwong equation	olume	(ii) V	'irial o	equat	ions	in t	erms	of	10
2A.	Derive the TdS equ process.	ations and apply the	n to a	n idea	l gas	unde	rgoiı	ng a	gene	eral	10
2B.	Derive an equation for	or the fugacity of a var	nder W	⁄aal ga	S						10
3.		tone(1)-acetonitrile(2) of the following: $T-x_1$ and T				•	he va	pour	press	sure	20

Т, К	311.45	315	319	323	327	331	335.33
P ₁ , ^{sat} ,'kPa	53.32	61.01	70.91	81.97	94.36	108.2	124.95
P ₂ , ^{sat} ,'kPa	21.25	24.61	28.90	33.79	39.35	45.62	53.32

- **4A.** Explain: Partial molar properties. Describe the graphical method of determination of partial molar properties with a neat diagram. Hence derive the equation for the determination of partial molar properties. Show that these equations are thermodynamically consistent.
- **4B.** Explain: Raoult's law, Lewis Randall rules, Henry's law. Give the equations and show them graphically also.

14

06

5A. Assuming Raoult's law to be valid for the system benzene (1)-ethyl benzene (2) and the vapour pressure are given by the Antoine equations:

	,, 1 1		
Components	А	В	С
Benzene(1)	13.8858	2788.51	52.41
Ethyl Benzene(2)	14.0045	3279.47	60.00

 $\ln P^{sat} = A - B / (T - C)$; P^{sat} is vapour pressure is in kPa , T is in K

Construct the following:

(i) The *T-x-y* diagram at 101.3 kPa.

(ii) The isobaric VLE diagram (*x-y*) at 101.3kPa

5B. Draw the T-x-y diagram for an immiscible system and label the phase fields.

05

6A The equilibrium constant at 420K for the vapour-phase hydration of ethylene to ethanol according to the reaction: $C_2H_4 + H_2O = C2H5OH$ is 6.8 x 10⁽⁻²⁾ and the standard heat of reaction at 298K is (-45.95 x 10³ J). The specific heat data are as follows: Cp (J/ mol K)

Ethylene :	$11.886 + 120.12 \times 10^{-3} \text{ T} - 36.649 \times 10^{-6} \text{ T}^2$
Water :	$30.475 + 9.652 \times 10^{-3} \text{ T} + 1.189 \times 10^{-6} \text{ T}^2$
Ethanol :	$29.358 + 166.9 \times 10^{-3} \text{ T} - 50.09 \times 10^{-6} \text{ T}^2$

Formulate a generation equation for estimating the equilibrium constant and standard Gibb's free energy change as functions of temperature,

- **6B.** Explain the various types of equilibrium constants that you have studied.
- 7. An alcohol (1) and water(2) form an azeotrope containing 42 mol % water at 101.3 kPa pressure. At the azetopic composition the vapour pressures of alcohol and water are 200kPa, 125.3kPa respectively. Construct the VLE (x-y) diagram. List the assumptions you make.
- 8. Calculate the fugacity of Nitrogen at 800 bar and 273K:
 - (i) Assuming ideal gas behaviour
 - (ii) Using the following PVT data

P(bar)	50	100	200	400	800	1000
PV/RT	0.9846	0.9846	1.0365	1.2557	1.7959	2.0641

04

16

20

20

15