Reg. No.					

INTERNATIONAL CENTRE FOR APPLIED SCIENCES

(Manipal University)

II SEMESTER B.S. DEGREE EXAMINATION – JUNE 2016

SUBJECT: CHEMISTRY (CH 121) (NEW SCHEME) (COMMON TO ALL BRANCHES) FRIDAY, 10th JUNE, 2016

Time: 3 Hours Max. Marks: 100

- ✓ Answer ANY FIVE FULL Questions.
- ✓ Draw a neat labeled diagram and equations wherever necessary.
- **1A.i)** Define Equlibrium constant. The gaseous reaction A+B ← C+D is studied in a one litre vessel at 25°C. The initial concentration of A is three times the initial concentration of B. After equilibrium is attained, the concentration of C is found to be equal to the concentration of B. Calculate the equilibrium constant of the reaction.
 - ii) What is a standard cell? Explain the consruction and working of Weston cadmium cell
- **1B.** i)Define Corrosion. Explain electrochemical theory of corrosion
 - ii) With a neat diagram explain electrophoresis in colloidal solution
- **1C.** Explain the band theory of conductors, semiconductors and Insulators.

(8+8+4)

- **2A. i)** Define heat capacity of a system. Derive relationship between C_P and C_v
 - ii) Describe the poggendrofs method of determination of emf of cell.
- **2B.** i) Define rate law of a reaction. Derive an expression for a first order rate constant of a reaction.
 - **ii)** What are the main postulates of Valence shell electron pair repulsion theory? Explain the structure of ammonia molecule.
- **2C.** The standard reduction potential, E° of copper is 0.34V and the concentration of Cu⁺² ion is 0.015M. Find the
 - a) Reduction electrode potential, E of copper
 - b)Free energy change of electrode reaction

(8+8+4)

- **3A.** i) Explain the types of hydrogen bonding with an example.
 - **ii**) Explain the construction and working of Calomel electrode. Write any two of its limitations.
- **3B.i)** What is meant by degree of hydrolysis and hydrolysis constant? Deduce the relation between them for a salt of strong acid and weak base.
 - ii) Define the following.
 - a) Gold number b) Flocculation value c) Triple point d) Eutectic point

CH 121 Page 1 of 3

- **3C.** Give reason for the followings:
 - i. Standard hydrogen electrode is known as theoretical reference electrode
 - ii. Phenaphthalein is not a good indicator in the titration of sodium carbonate and hydrochloric acid.

(8+8+4)

- **4A.** i) Explain the three types of overlapping between s and p orbitals with example.
 - ii) How will you purify colloidal solution by electrodialysis.
- **4B.i**) State second law of thermodynamics. What are the limitations of first law of thermodynamics?
 - ii) What is solubility product principle? When the Calcium sulphate $(K_{sp}=2.4\times10^{-5})$ will be precipitated from the hard water containing 0.01mol/liter of Calcium chloride by the addition of
 - a) 0.001mol/litre of dilute sulphuric acid
 - b) 0.02mol/litre of dilute sulphuric acid.
- **4C.**Discuss the buffer action of ammonium acetate solution. Derive an expression for calculation of its pH. (8+8+4)
- **5A.i)** What are main postulates of Arrhenius theory of electrolytic dissociation
 - ii) Write the conjugate base of the following
 - a) The HSO₄
 - b) The HCO₃⁻
 - c) The H₂O
 - d) The NH₃
- **5B.i**) Define Ionic product of water. If hydrochloric acid is added to water until the H+ ion concentration of the solution becomes 1.0×10-5M, what is the OH⁻ concentration and pH of the solution that time ?
 - ii) Draw and explain the phase diagram of lead silver system.
- **5C.**Define Hess's law. Explain with example one of its application.

(8+8+4)

- **6A. i)** What is meant by corrosion inhibitors. Explain the functions of cathodic inhibitors in corrosion control.
 - ii) The emf of an electrochemical cell consists of iron electrode dipped in 0.1M FeSO₄ and silver electrode in AgNO₃(x) is 1.1926V. Write the cell reaction, cell representation and calculate the strength of AgNO₃.($E^{\circ}_{(Ag^+/Ag)} = 0.80V$ and $E^{\circ}_{(Fe^{2+}/Fe)} = -0.41V$)
- **6B.** Describe the followings;
 - a) Origin of electrode potential
- b) liquid junction potential
- **6C.** Name the type of corrosion taking place in the boiler. Explain the process with suitable equations.

(8+8+4)

CH 121 Page 2 of 3

7A.Differentiate the following

- a) Galvanic series and electrochemical series
- b) Lyophobic and lyophilic sols
- **7B. i)** The cell SCE II HCl (0.1M) I AgCl(s) I Ag gave an emf of 0.20 V and 0.23 V with a buffer having pH value 3.0 and unknown pH value respectively. Calculate the pH value of unknown buffer solution. Given E_{SCE} = 0.2422 V.
 - ii) Write the expression of solubility product of the silver chloride and barium sulphate. Calculate its solubility in moles/litre. (Ksp of AgCl = 1.8×10^{-10} and Ksp of BaSO₄ = 1.1×10^{-10})

7C. Justify the followings;

- a) Calomel electrode cannot be used above 50 °C.
- b) The colloidal particles precipitate on adding an electrolyte.

(8+8+4)

- **8A.** What is hybridization? Explain the structure of CH₄ and BF₃
- **8B.** i) Explain common ion effect with an example.
 - ii) Explain the kinetic and optical properties of colloidal system
- **8C.**What is Ionic bond? Explain the characteristics properties of Ionic bond.

(8+8+4)

CH 121 Page 3 of 3