		Reg. No.								
ज्ञानं ब्रह्म		-								
	INTERNATIONAL	CENTRE I	FOR	R AP	PL	ED	SC	IEN	S	

INTERNATIONAL CENTRE FOR APPLIED SCIENCES (Manipal University) II SEMESTER B.S. DEGREE EXAMINATION – JUNE 2016 SUBJECT: MATHEMATICS -II (MA 121) (COMMON TO ALL BRANCHES) MONDAY, 6th JUNE, 2016

Time: 3 Hours

Max. Marks: 100

Answer ANY FIVE full Questions.

✓ Draw diagrams and equations whenever necessary.

1A. If
$$u = \frac{x^3 y^3 z^3}{x^3 + y^3 + z^3} + \log\left(\frac{xy + yz + zx}{x^2 + y^2 + z^2}\right)$$
, find the value of $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z}$

1B. Evaluate $\iint_R x^2 dx dy$ where R is the region in the first quadrant bounded by the lines

y = x, y = 0, x = 8 and the curve xy = 16.

1C. Define linearly dependent and independent vectors and give one example for each.

(8+8+4 = 20 marks)

2A. Verify Stoke's theorem for the vector field $\vec{F} = (2x - y)\hat{\imath} - yz^2\hat{\jmath} - y^2z\hat{k}$ over the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$, bounded by its projection on the *xy*-plane.

2B. Using the transformation x + y = u and y = uv, evaluate $\int_0^1 \int_0^{1-x} e^{\frac{y}{x+y}} dy dx$.

2C. Show that $\tau\left(\frac{1}{2}\right) = \sqrt{\pi}$. Hence find $\tau\left(\frac{-7}{2}\right)$.

(8+8+4 = 20 marks)

3A. i) If
$$u = f(x - y, y - z, z - x)$$
, Prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.

ii) If $u = x \log xy$ where $x^3 + y^3 + 3xy = 1$. Find $\frac{du}{dx}$.

- 3B. Show that $\beta(m, n) = \frac{\tau(m)\tau(n)}{\tau(m+n)}$, for m, n > 0.
- 3C. Using Gauss Jordan method, find the inverse of the following matrix.

	[1	2	3]			
A =	2	4	5			
	3	5	6			

[(5+3)+8+4=20 marks]

- 4A. Verify Green's theorem in the plane for $\oint_c (xy + y^2)dx + x^2dy$ where *c* is the closed curve of the region bounded by y = x and $y = x^2$.
- 4B. Evaluate $\int_0^\infty \int_0^\infty \int_0^\infty \frac{dzdydx}{(1+x^2+y^2+z^2)^2}.$
- 4C. In estimating the cost of a pile of bricks measured as $2m \times 15m \times 1.2m$, the tape is stretched 1% beyond the standard length. If the count is 450 bricks *to* 1*cu*.*m* and bricks cost *Rs*. 530 per 1000, find the approximate error in the cost.

$$(8+8+4 = 20 \text{ marks})$$

5A. i) Determine the constant a so that the following vector is solenoidal.

$$\vec{V} = (-4x - 6y + 3z)\hat{\imath} + (-2x + y - 5z)\hat{\jmath} + (5x + 6y + az)\hat{k}.$$

ii) Find constants a, b, c so that $\vec{V} = (-4x - 3y + az)\hat{\imath} + (bx + 3y + 5z)\hat{\jmath} + (4x + cy + 3z)\hat{k}$ is irrotational. Hence show that \vec{V} can be expressed as the gradient of a scalar function.

- 5B. Show that $\int_0^\infty \sqrt{y} e^{-y^2} dy \times \int_0^\infty \frac{e^{-y^2}}{\sqrt{y}} dy = \frac{\pi}{2\sqrt{2}}$.
- 5C. The diameter and altitude of a 'can' in the shape of the right circular cylinder are measured as 40cm and 64cm respectively. The possible error in each measurement is $\pm 5\%$. Find approximately the maximum possible error in the computed value for the volume and the lateral surface. Find the corresponding percentage error.

$$[(2+6)+8+4=20 \text{ marks}]$$

- 6A. Find the extreme values of f(x, y) = xy(a x y).
- 6B. Construct orthonormal basis from the following set of vectors

 $\{(1, 1, 1), (-1, 0, -1), (-1, 2, 3)\}.$

6C. Find the area between the curve $r = a(sec\theta + cos\theta)$ and the asymptote $r = asec\theta$.

(8+8+4 = 20 marks)

7A. A rectangular box open at the top have volume 32 *cubic feet*. Find the dimension of the box requiring least material for constructions.

7B. i) Define Rank of the matrix.

ii) Find the values of *a* and *b* for which the following system

$$x - y + z = 6$$

$$x + 2y + 3z = 10$$

$$x + 2y + az = b.$$

have a) Unique solution.

- b) Infinitely many solutions
- c) No solution

7C. Show that $\nabla \phi$ is a vector perpendicular to the surface $\phi(x, y, z) = c$.

[8+(1+7)+4=20 marks]

- 8A. Find the maximum and minimum distances of the point (3, 4, 12) from the sphere $x^2 + y^2 + z^2 = 1$.
- 8B. Find the volume inside the cone $x^2 + y^2 = z^2$ bounded by the sphere $x^2 + y^2 + z^2 = a^2$.
- 8C. If x increases at the rate of 2cm/sec at the instant when x = 3cm and y = 1cm.

At what rate must y be changing in order that the function $2xy - 3x^2y$ shall be neither

Increasing nor decreasing?

(8+8+4 = 20 marks)

##