
Page	1	of 2	
------	---	--------	--

(Manipal University)

III SEMESTER B.S. DEGREE EXAMINATION – MAY 2016

SUBJECT: FORMAL LANGUAGES AND AUTOMATA THEORY (CS 233)

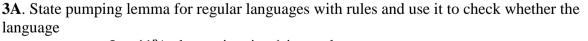
(BRANCH: COMPUTER SCIENCE)

24TH MAY. 2016

Time: 3 Hours

प्रज्ञानं ब्रह्म

- ✓ Answer ANY FIVE full Questions.
- ✓ Missing data, if any, may be suitably assumed.


1A. Define finite automata. Explain deterministic and non-deterministic finite automata.	
with the help of an example for each.	6
1B . Design a DFA which contains exactly one 'a' and exactly two b's.	4
1C . Prove that for any transition function δ and for any two input strings x and y,	
$\delta^*(\mathbf{q},\mathbf{x}\mathbf{y}) = \delta(\delta^*(\mathbf{q},\mathbf{x}),\mathbf{y})$	6
1D . Obtain grammar for regular expression representing strings of a`s and b`s, having a	
substring'ab'. What language does this grammar represent?	4

2A. Minimize the following DFA Fig-2A. Clearly show all the steps.

2B. Convert following NFA to DFA Fig-2. Show all the steps.

2C. Obtain regular expression for the following sets

a) $L_1 = \{ a^n b^m : (n+m) \text{ is even} \}$

 $L = \{1^p | where p is prime\}$ is regular or not.

b) $L_2 = \{$ Strings of a's and 'b's ending with 'ab' or 'ba' $\}$

(Fig-2A)

8

6

6

8

Max. Marks: 100

3B . Define right linear and left linear grammar with example for each .Construct a left linear grammar by designing respective non deterministic automata for the given languages.	
(i) L {(aab)*ab} (ii) L(abb*)	12
4A . Find context free grammar for the language L= { $a^n b^m c^k : m = n \text{ or } m \le k$ } 4B . Given the set of production $S \rightarrow S *A A A \rightarrow A + B B B \rightarrow (S) a b$	4
 Find the left most derivation and draw the corresponding derivation tree for the string a*(b+a) 4C. Find S grammar for the language L = { aⁿbⁿ⁺¹ n ≥ 2} 4D. Test whether the following grammar is ambiguous or not S→AB aaB A→aA a B→ b). 6 5
If it is ambiguous construct an equivalent unambiguous grammar.	5
 5A. Eliminate useless,λ and unit productions from the following S→abAB A A→bAB λ B→BAa A λ 5B. Convert the following into CNF: 	6
$S \rightarrow ASB \mid \lambda A \rightarrow aAS \mid a B \rightarrow SbS \mid A \mid bb$	6
 5C. Convert the following into GNF: S→AA 0 A→ SS 1 5D. Show the following two grammar are equivalent 	4
(i) $S \rightarrow abAB ba$ $A \rightarrow aaa$ (ii) $S \rightarrow abAaA abAbb ba$ $A \rightarrow aaa$	
B→aA bb	4
6A . With neat figure explain the language families in the Chomsky Hierarchy 6B . Construct NPDA for the language $L = \{ww^R w \in \{a,b\}^+\}$	8 6
6C. Convert the following CFG to PDA $S \rightarrow 0A$	
$A \rightarrow 0AB \mid 1$ $B \rightarrow 1$	6
74 Design wandstampinistic work deservate with its transition and for the faller	•

7A. Design nondeterministic pushdown automata with its transition graph for the following grammar. Trace it for the string w = aaabc. a >

S→aA	
A→aABC bB a	
B→b	
$C \rightarrow c$	

7B. Design Turing machine which accepts the language $L = \{1^n 2^n \mid n \ge 1\}$. Draw transition graph and also trace it for w = 1122. 10

8A. Define recursively enumerable and recursive languages .Is the family of recursive languages closed under concatenation? 6

8B. Discuss the concept of context sensitive grammar and language and also give one example 4 for the same. 4

8C. Give formal definition of Off- line turing machine with the help of figure.

8D. Suppose we make a restriction that a turing machine must always write different from the one it reads, that is if $\delta(q_i, a) = (q_j, b, L \text{ or } R)$, then a and b must be different. Does this limitation reduce the power of automaton? Justify. 4

10