		È
	\bigcirc	
		0
N	lanip	2

INTERNATIONAL CENTRE FOR APPLIED SCIENCES (Manipal University) INSPIRED BY LIFE **IV SEMESTER B.S. DEGREE EXAMINATION – MAY 2016** SUBJECT: ANALYSIS AND CONTROL OF ELECTROMAGNETIC DEVICES (EE 242) (BRANCH: E&E/IP/ MECHANICAL) 23RD MAY, 2016

Reg. No.

Tim	Time: 3 HoursMax. Marks:	
ſ	Answer ANY FIVE full Questions.	
1A.	Mention the properties of an ideal transformer	(04)
1B.	With a neat sketch draw and explain the Y/Δ starter of a 3 phase induction motor	(06)
1C.	A 15 kVA transformer is loaded as follows 12 hours – 2 kW at PF of 0.5 6 hours – 12 kW at PF of 0.8 6 hours – 18 kW at PF of 0.9	
	Find all day efficiency. Assume Iron loss = full load copper loss = 300 W.	(10)
2A. 2B.	Starting from the approximate equivalent circuit derive the torque equation & explain the torque / slip characteristics of 3 phase induction motor. A 2000 V, 3 phase, star connected synchronous motor has an effective resistance & synchronous reactance of 0.2 Ω and 2.2 Ω per phase respectively. The input is 800 kW at normal voltage and electromotive force is 2500 V.	(06)
	Calculate line current and power factor.	(10)
2C.	Distinguish between core type and shell type transformers	(04)
3A. 3B. 3C.	Determine R _c , X _m , R _{eq} , X _{eq} referred to primary of a 4 kVA, 200/400 V, 50 Hz transformer with the following results O.C Test 200 V, 0.7 A, 70 W (LV Side) S.C Test 15 V, 10 A, 80 W (HV Side) Find the secondary terminal voltage and efficiency at full load 0.8 PF lag. Distinguish between squirrel cage and slip ring rotor. A 3 phase 20 hp, 500 V, 50 Hz, 6 Pole induction motor runs at 950 RPM, with a power factor of 0.86, The Mechanical losses total 1 hp. Calculate,	(10) (03)
	a) Slip b) Rotor copper loss c) Input of stator losses amount to 1500 W d) Line current e) Rotor frequency	(07)
4A.	A 10 pole, 50 Hz, slip ring induction motor runs at 576 RPM on full load. The rotor resistance per phase is 0.25Ω . Assuming a constant load torque, determine the additional resistance per phase in the rotor to reduce the speed to 480 RPM.	(06)
4B.	phase in the rotor to reduce the speed to 480 RPM. Derive the condition for zero voltage regulation & maximum voltage regulation.	(06) (04)

4C.	A 500 V, 50 Hz, 3 Phase circuit takes 20 A at a lagging PF of 0.8. A synchronous motor is used to make the overall PF 0.95 lag. Calculate the kVA input to motor and its power factor when driving a load of 10 hp. The motor has an efficiency of 80 %.	(10)	
5A.	An 11 kV, 3 Phase, star - connected synchronous motor takes 200 A from supply at unity PF. The induced EMF is increased by 25 %, find the current and power factor. Find		
	the current and power factor if EMF is decreased by 25 %. Neglect resistance and synchronous reactance is 8Ω .	(14)	
5B.	Draw and explain the phasor diagram of a transformer supplying inductive load.	(06)	
6A. 6B.	Explain any two methods of staring synchronous motor. Determine iron loss and full load copper loss of a 1 kVA, 50 Hz, 200/400 V transformer.	(06)	
6C.	The efficiency is 0.88 both at 50 % of full load and 131 % of full load. Assume load PF to be unity. The rotor resistance & reactance per phase of a 4 pole, 50 Hz, 3 phase	(08)	
	induction motor are 0.025 Ω and 0.12 Ω respectively. Find the value of external rotor resistance to get three fourth of maximum torque at starting.	(06)	
7A.	Derive equations for power input & power output of a synchronous motor, in terms of E, V & Z_s . Also find the condition for maximum input and maximum output.		
7B.	respectively, has a short circuit current of 3.5 times full load current. Full load		
	slip = 0.05. Estimate the line current at starting using Y/Δ starter. Also find the starting torque in terms of full load torque.	(08)	
8A. 8B.	Derive the EMF equation of a transformer A Single phase 50 Hz core type transformer has square cores of 20 cm side.	(02)	
	The flux density in core is 1 Wb/m ² . Find the number of turns in two windings designed for 3000/220 V ratio. Stacking factor =0.9.		
8C.	A 3 phase induction motor has 4 pole, star connected stator winding & runs on 220 V, 50 Hz supply. The rotor resistance is 0.1 Ω and rotor reactance 0.9 Ω . The ratio of stator to rotor turns is 1.75. The full load slip is 5%. Calculate for this load		
	a) The torque b) hp		
	Find alsoc) Maximum torqued) Speed at maximum torquee) Starting torquef) draw the torque / slip curve	(12)	