

#### **Time: 3 Hours**

Max. Marks: 100

 $(4 \times 5 = 20M)$ 

Answer any FIVE questions from each part.

# <u>PART - A</u> (2×5=10M)

- 1A. If A and B are two mutually exclusive events of S then  $P(A \cup B) =$
- 1B. A pair of dice are thrown. What is the probability that sum is greater than 8?
- 1C. The probability density function of exponential distribution is \_.
- 1D. If A and B are two events with  $P(A) = \frac{1}{3}$ ,  $P(B) = \frac{1}{4}$ ,  $P(A \cup B) = \frac{1}{2}$ , then find P(A/B).
- 1E. Classify the following PDE :  $u_{xx} + u_{xy} = f(x, y)$
- 1F. Express f(x) = x as a Fourier series in the interval  $-\pi < x < \pi$ .
- 1G. Suppose a random variable X:0,1,2 has its probabilities  $\frac{1}{3}$ ,  $\frac{1}{6}$ ,  $\frac{1}{2}$  respectively. Find cdf.

### <u> PART - B</u>

# 2A. A lot consists of 10 good articles, 4 with minor defects and 2 with major defects. Two articles are chosen at random from the lot. Find the probability thata) both are good b) atleast one is good c) at most one is good.

- 2B. The probability that a pen manufactured by a company will be defective is  $\frac{1}{10}$ . If 12 such pens are manufactured, find the probability that a) exactly 2 will be defective b) atleast 2 will be defective.
- 2C. Fit a straight line to the following data

| Х | 61 | 71 | 81 | 91 | 101 |
|---|----|----|----|----|-----|
| Y | 8  | 10 | 12 | 10 | 16  |

2D. If A and B are two events with  $P(A) = \frac{1}{3}$ ,  $P(B) = \frac{1}{4}$  and  $P(A \cup B) = \frac{1}{2}$  then find a)  $P(A \cap \overline{B})$  b)  $P(A/\overline{B})$  c) P(A/B)

- 2E. Suppose that a breaking strength of cotton say X is normally distributed with  $\mu = 165$  and  $\sigma^2 = 9$ . Assume that a sample of this fabric is considered to be defective if x < 162. What is the probability that a fabric chosen at random will be defective?
- 2F. Find the half range cosine series for the function  $f(x) = x^2$  in the range  $0 \le x \le \pi$ .
- 2G. The odds that a person X speaks the truth are in the ratio 3:2 and the person Y speaking the truth is in the ratio 5:3. In what percentage of cases are they likely to contradict each other on an identical point?

### <u>PART - C</u> (6×5=30M)

- 3A. The chance that a doctor A will diagnose the disease correctly is 60%. Chance that patient A die after proper diagnosis is 40%. Chance that patient of A will die after wrong diagnosis is 70%. If patient of A dies, what is the probability that his disease was correctly diagnosed?
- 3B. Suppose a random variable X has pdf  $f(x) = \begin{bmatrix} k(1-x^2), & 0 < x < 1 \\ 0, & \text{otherwise} \end{bmatrix}$ . Then find

a) the value of k b) mean and variance of X.

- 3C. The probability that an individual suffers from a bad reaction is 0.001. Determine the probability that out of 2000 individualsa) exactly 3, b) more than 2, individuals suffer from a bad reaction.
- 3D. If  $f(x) = |\sin x|$ , expand f(x) as a Fourier series in  $(-\pi, \pi)$ .
- 3E. Evaluate the pivotal values of the equation  $u_{tt} = 16u_{xx}$  taking h = 1 upto t = 0.75. The boundary conditions are u(0,t) = u(5,t) = 0,  $u_i(x,0) = 0$  and  $u(x,0) = x^2(5-x)$ .
- 3F. Find the Fourier series to represent the function f(x) by  $f(x) = \begin{cases} x, & 0 \le x \le \pi \\ 2\pi x, & \pi \le x \le 2\pi \end{cases}$

3G. Compute an approximate probability that a mean sample of size 15 from a distribution having pdf  $f(x) = \begin{bmatrix} 3x^2, & 0 < x < 1 \\ 0, & \text{otherwise} \end{bmatrix}$  is between  $\frac{3}{5}$  and  $\frac{4}{5}$ .

### PART - D

 $(8 \times 5 = 40M)$ 

4A. Find the joint distribution of X and Y which are independent random variables with the following respective distributions.

| Х    | 1   | 2   | У    | -2  | 5   | 8   |
|------|-----|-----|------|-----|-----|-----|
| f(x) | 0.7 | 0.3 | g(y) | 0.3 | 0.5 | 0.2 |

Also find Cov(X, Y).

4B. Suppose that 3 uncorrelated random variables X, Y, Z has standard deviation 5, 12, 9 respectively. Find correlation coefficient between U = X + Y and V = Y + Z.

4C. If 
$$f(x) = \left(\frac{\pi - x}{2}\right)^2$$
 in the range 0 to  $2\pi$ , show that  $f(x) = \frac{\pi^2}{12} + \sum_{1}^{\infty} \frac{\cos nx}{n^2}$ .

- 4D. Solve the PDE  $\nabla^2 u = -10(x^2 + y^2 + 10)$  over the square with sides x = 0 = y, x = 3 = y with u = 0 on the boundary and mesh length 1.
- 4E. An insurance company has discovered that only about 0.1% of the population is involved in certain type accident in each year. If its 10000 policy holders were randomly selected from the population, what is the probability that not more than 5 are involved in such an accident the next year?
- 4F. Suppose that a two-dimensional continuous random variable has a pdf

$$f(x,y) = \begin{bmatrix} \frac{x^2 + xy}{3}, & 0 \le x \le 1, 0 \le y \le 2\\ 0, & \text{elsewhere} \end{bmatrix}.$$

Show that f(x, y) is a joint pdf. Also find P(X+Y < 1).

4G. Let a random sample of size 17 from  $N(\mu, \sigma^2)$  yields  $\overline{X} = 4.7$  and  $s^2 = 5.76$ . Determine 90% confidence interval for  $\mu$ .

##