Reg. No.

INTERNATIONAL CENTRE FOR APPLIED SCIENCES (Manipal University) IV SEMESTER B.S. DEGREE EXAMINATION - MAY 2016 SUBJECT: VLSI DESIGN (EC 245) (BRANCH: E & C) 23RD MAY, 2016

Time: 3 Hours

Max. Marks: 100

- ✓ Answer ANY FIVE full Questions.
- \checkmark Layout must be drawn using the graph sheet provided.
- ✓ Missing data may be suitably assumed.
- 1A. Explain the operation of pseudo NMOS inverter. Derive Zpu/ Zpd ratio for pseudo NMOS inverter driven from a similar inverter.
- 1B. Explain in detail about working of MOS capacitor.
- 1C.What do you understand by channel length modulation? Explain in detail.

(10+5+5)

- 2A.With the help of neat circuit diagram and curve, explain the working of CMOS inverter. Derive the expression for V_{inv} . Discuss the merits of CMOS inverter over NMOS inverter with depletion load.
- 2B. Calculate the effective capacitance for the given multi-layer structure in Figure 2B for 5μ m process. Relative Capacitance value for metal1= 0.075, polysilicon=0.1 and Gate to channel = 1.0. (10+10)
- 3A. Explain the principle of photo lithography. Discuss the working of positive photo resist and negative photo resist with necessary diagrams.
- 3B. For a CMOS Inverter having $L_n = L_p = W_n = 2 \mu m$, $W_p = 5 \mu m$. Compute the following: (i) rise time t_r (ii) fall-time t_f (iii) total delay T_d through a pair of inverters. Given the typical sheet resistance and standard capacitance values for 2 μm process: [i] NMOS channel resistance = 20 k Ω /square [ii] PMOS channel resistance = 45 k Ω /square[iii] Gate-to-channel capacitance = 8pF x 10⁻⁴/um².
- 3C. With neat figures explain the different steps involved in the fabrication of NMOS transistor. What is the advantage of self-aligned process? (5+5+10)
- 4A. Draw the circuit, stick diagram and layout for two input CMOS EXNOR gate.
- 4B. Implement 2 input NAND and NOR functions using following approach:[a] pass transistors, [b] Transmission gates, [c] NMOS logic with depletion load,
 - [d] CMOS logic

(10+10)

- 5A. Give the circuit implementation of following multiple output function using NMOS based PLA. Give the stick notation. $Z_1 = AB + \overline{ABC}$; $Z_2 = AB$; $Z_3 = A + \overline{BC}$.
- 5B. Give hardware implementation for storing following 4-bit words using NMOS ROM structure. word1: 0101; word2: 0010; word3: 1001; word4: 0110
- 5C. Calculate I_D and V_{SD} , and indicate region of operation of transistor M1 for the circuit in **Figure 5C**. Vtp = -0.4 V, $Kp = 120 \mu A/V^2$, and W/L = 2. (5+5+10)

- 6A. Discuss the structured design implementation of (n+1)-bit parity indicator block that is provided with n + 1 bit input word $A_n A_{n-1}A_{n-2} \dots A_1 A_0$. The circuit has one bit parity output P. P will be HIGH (LOW) for even (odd) number of 1s at input. Give the stick notation for CMOS implementation of standard cell.
- 6B. i)With the help of a neat circuit diagram, explain the operation of BiCMOS inverter. Also highlight the role of each transistor in the circuit.ii)What are the merits and demerits of the BiCMOS logic. (10+10)
- 7A. Compare and contrast CMOS, bipolar and GaAs technologies.
- 7B. Discuss cascaded inverters as drivers for driving large capacitive loads and derive the necessary expressions. (10+10)
- 8A. Explain the fabrication process of DMESFET using planar technology with necessary diagrams.

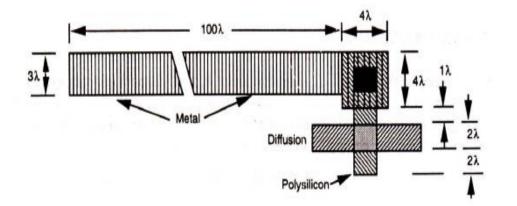


Figure 2B

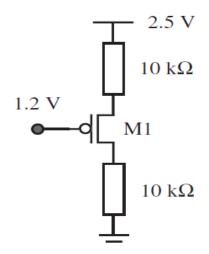


Figure 5C