Reg. No.									
----------	--	--	--	--	--	--	--	--	--

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

II SEMESTER B.TECH END SEMESTER EXAMINATIONS, MAY 2016

SUBJECT: ENGINEERING MATHEMATICS II (MAT -1201)

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates

Answer **ALL** the questions. All questions carry equal marks.

	Expand $f(x, y) = sinxy$ in powers of $(x - 1)$ and $(y - \pi/2)$ up to the second		
1A.	degree terms	3 M	
1B.	Evaluate $\int_{0}^{2a} \int_{0}^{\sqrt{2ax-x^2}} \frac{x}{\sqrt{x^2+y^2}} dy dx$ by changing to polar co-ordinates.	3 M	
1C.	Find the area lying inside the cardioid $r = a (1 + \cos\theta)$ and outside the circle $r = a$, using double integration.	4 M	
2A.	Discuss the extreme values of the function : $f(x, y) = x^3 + y^3 - 63(x + y) + 12xy$	3 M	
2B.	Verify Cauchy's Mean Value theorem for functions $f(x) = e^x$ and $g(x) = e^{-x}$ in [a, b].	3 M	
	Test the series for convergence:		
2C.	(i) $\sum \sqrt[3]{n^3 + 1} - n$ (ii) $1 + \frac{2^2}{2!} + \frac{3^2}{3!} + \frac{4^2}{4!} + \dots$	4 M	
	Solve: $\omega''(x) + 2\omega'(x) + \omega(x) = x$, $\omega(0) = -3$ and $\omega'(0) = 0$ using Laplace		
3A.	transform method.	3 M	
	The radius of a normal section of a right circular cylinder is 2 units.	3 M	
3B.	The axis lies along the straight line $\frac{x-1}{2} = \frac{y+3}{-1} = \frac{z-2}{5}$. Find its equation.		
3C.	Find the volume bounded by the paraboloid $x^2 + y^2 = az$, the cylinder $x^2 + y^2 = 2ay$ and the plane $z = 0$	4 M	

	Reg. No.					
प्रज्ञानं ब्र Manip SPIRED E	A Constituent Institute of Manipal University)	KNOWLEDGE IS POWE KNOWLEDGE IS POWE MULTURE M				
4A.	Find the nature of series $1 + \frac{x}{2} + \frac{x^2}{5} + \frac{x^3}{10} + \dots$	3 M				
4B.	Evaluate $\lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{\frac{1}{x^2}}$.					
4C.	Find (i) $L\left\{\frac{e^{-2t}-1}{t}\right\}$ (ii) $L^{-1}\left\{\frac{s}{s^2+4s+13}\right\}$.					
5A.	If $H = f(y-z, z-x, x-y)$, then prove that $\frac{\partial H}{\partial x} + \frac{\partial H}{\partial y} + \frac{\partial H}{\partial z} = 0.$					
5B.	Express the following function in terms of unit step functions and hence find its Laplace transform $f(t) = \begin{cases} t^2, & 0 \le t < 2\\ 2t - 1, & 2 \le t < 3\\ 7, & t \ge 3 \end{cases}$	3 M				
5C.	Evaluate $\int_{0}^{1} \frac{x^2 dx}{\sqrt{1-x^4}} \times \int_{0}^{1} \frac{dx}{\sqrt{1+x^4}}$ using Beta and Gamma functions.	4 M				