

- 3A. Air enters the compressor of a gas turbine engine with velocity 127 m/s, (03) density 1.2 kg/m3 and stagnation pressure 0.9 MPa. Air exits the compressor with velocity 139 m/s and stagnation pressure 3.5 MPa. Assume that the ratio of specific heats is constant and equal to 1.4
 - I. What is the compressor pressure ratio?
 - II. If the polytropic efficiency of the compressor is 0.89, then find the isentropic efficiency of compressor
- 3B. The mass flow rate of air through an aircraft is 10 kg/s. The compressor outlet (02) temperature is 400 K and the turbine inlet temperature is 1800 K. The heating value of the fuel is 42 MJ/kg and the specific heat at constant pressure is 1 KJ/KgK. If the burner efficiency is 93%, determine the mass flow rate of fuel.
- **3C.** A gas turbine engine flying at a speed of 900 km/h is operating under the **(05)** following conditions:

-	
Stagnation temperature at the turbine inlet	1350 K
Stagnation pressure at the turbine inlet	10 bar
Static temperature at turbine exit	800 K
Velocity at turbine exit	200 m/s
Isentropic efficiency of turbine	0.96
Isentropic efficiency of nozzle	0.89
Nozzle exit area	0.0935 m ²
Find the stagnation pressure in the nozzle and thrust.	

Take Ta = 226 K, Pa = 0.42 bar, $Cp_g = 1.147 \text{ kJ/kgK}$, $\Upsilon_g = 1.33$.

4A. Briefly describe supercharging operation.

4B. With a neat sketch, explain the parts of a centrifugal compressor. **(03)**

4C. A 50% reaction, axial flow compressor with 7 stages runs at a mean blade (05) speed of 250 m/s. The pressure ratio developed by the machine is 12 and isentropic efficiency is 85%. Determine the blade and air angle if the axial flow velocity is 200 m/s. Condition at inlet are 1 bar and 300K. Assume work done factor as 0.8.

5A.	Derive Euler's Energy Equation for turbomachinery.	(04)
5B.	Write short notes on:	(06)
	i) Compressor stall and surge	

- ii) Transpiration cooling in turbine blades
- iii) losses associated with axial compressors

(02)