	_		_									
		Reg.No.										
प्रज्ञानं ब्रह Manipa INSPIRED BY	(A Constituent (A Constituent IV SEMESTER B.TECH (A END SEMEST	te of Te Institute of ERONAUTICA	ech Mar AL/AU	n nc nipal UTOI ION	о lo . Un: мов S, J	B Sivers Sile I UNE	r, N sity) Engi E 20	/Ia INEE 16	ni] RING	pa] ₃₎	KI KI	NOWLEDCE IS POWER
SUBJECT: LINEAR CONTROL THEORY [AAE2204]												
	REVISED CREDIT SYSTEM Time: 3 Hours MAX.MARKS: 50											
	Instructions to Candidates:]
	 Answer ALL the questions. Missing data may be suitable assumed. 											
1A.	Find the transfer function $X_2(s)/F(s)$, of the system shown figure 1 in page 2											(03)
1B.	Reduce the system shown in figure 2 to a single transfer function.										(05)	
1C.	Demonstrate the rule of elimination of negative feed back										(02)	
2A.	Obtain the transfer function of the signal flow graph in figure 3 using mason's											s (04)
2B.	The closed loop transfer function of an first order system is given by $\frac{C(s)}{R(s)} = \frac{1}{(T_{s}+1)}$ Determine its response to a unit step input.										(02)	
2C.	For a unity feedback control system, the open loop transfer function is given by $G(s) = \frac{10(2+s)}{s^2(s+1)}$. Find the steady state error when the input is $R(s) = \frac{3}{s} - \frac{2}{s^2} + \frac{1}{3s^3}$.										y (04)	
3A.	Sketch the Bode plot for the following open loop transfer function $G(s) = \frac{40(1+s)}{(1+5s)(s^2+2s+4)}$										(04)	
3B.	Determine the phase margin and gain margin from the Bode plot in 3A.									(02)		
3C.	Sketch the polar plot of the following transfer function $G(s) = \frac{10(s+1)}{(s+10)^2}$										(04)	
4A.	The unity feedback system of an open loop transfer function is $\frac{v}{r}$								(05)			

$$G(s) = \frac{K}{s(s^2 + 4s + 13)}$$

Sketch the root locus.

4B. Determine the dominant pole of unity feedback control system having a forward **(03)** path transfer function

$$G(s) = \frac{K}{s(s+2)(s+8)}$$

The centroid is found to be at -3.33, break away point is at 7 and -48 and the point which crosses the imaginary line is found to be at +j4 and -j4. The lag compensator should meet the following specifications I) Percentage overshoot

 \leq 16% for unit step input II) Steady state error \leq 0.125 for unit ramp input.

- 4C. What are lead and lag compensators?
- **5A.** What are all the issues when the state variables exceeds or less the required **(02)** number of variables to determine the dynamics of the system completely?
- **5B.** Derive the state space model from the translational mechanical system shown in **(05)** figure 4
- **5C.** Derive the transfer function model from the given linear state space model (03) $\begin{bmatrix} \dot{x}_1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 \end{bmatrix} \begin{bmatrix} x_{11} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} x_{11} \\ x_{11} \end{bmatrix} \begin{bmatrix} x_{11} \\ x_{11} \\ x_{11} \end{bmatrix} \begin{bmatrix} x_{11} \\ x_{11}$

Figure 2

(02)