| Reg.  | No.  |  |
|-------|------|--|
| ILLZ. | 110. |  |



TIME: 3 HOURS

MANIPAL INSTITUTE OF TECHNOLOGY (Manipal University) Manipal – 576 104



MAX. MARKS: 100

IV SEMESTER B.Tech (BME) DEGREE MAKEUP EXAMINATIONS JUNE/JULY 2016

SUBJECT: ANALOG ELECTRONIC CIRCUITS (BME 202) (REVISED CREDIT SYSTEM) Thursday, 30<sup>th</sup> June 2016 : 2.00 p.m.- 5.00 p.m.

|    |                                            | Instructions to Candidates:                                                                                                                                                                                                                                                                             |   |  |  |
|----|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|
| 1. |                                            |                                                                                                                                                                                                                                                                                                         |   |  |  |
| 2. | , ,                                        |                                                                                                                                                                                                                                                                                                         |   |  |  |
| Ζ. | 2. Draw labeled diagram wherever necessary |                                                                                                                                                                                                                                                                                                         |   |  |  |
| 1. | (A)                                        | Draw a typical Zener diode regulator circuit. Determine the range of $R_L$<br>and $I_L$ that will result in $V_{R_L}$ being maintained at 10 V. Also find the<br>maximum wattage rating of the diode. The following parameters are<br>provided: $V_i = 50V, V_z = 10V, I_{zmax} = 32mA, R_s = 1K\Omega$ | 6 |  |  |
|    | (B)                                        | Explain the working of a full wave bridge rectifier circuit and draw the output voltage and current waveforms.                                                                                                                                                                                          | 6 |  |  |
|    | (C)                                        | Derive the expression for the peak current in the diode of a half wave rectifier circuit with capacitor filter. Also, elaborate on the design of a regulated power supply.                                                                                                                              | 8 |  |  |
| 2. | (A)                                        | Draw the voltage shunt feedback amplifier circuit. The values of h-<br>parameters are: $h_{fe} = 100$ , $h_{ie} = 1.1K$ , $h_{re} \& h_{oe}$ are negligible. The values of<br>the circuit parameters are: $R_c = 12K$ , $R_f = 200K$ , $R_s = 10K$ .<br>Determine $R_{Mf}$ , $A_{vf}$ , $R_{if}$        | 6 |  |  |
|    | (B)                                        | Discuss the characteristics of negative feedback in detail.                                                                                                                                                                                                                                             | 6 |  |  |
|    | (C)                                        | In the process of analysis of voltage series feedback amplifier with BJT as<br>the active device, evaluate the gain, feedback factor, input impedance<br>and output impedance.                                                                                                                          | 8 |  |  |
| 3. | (A)                                        | Consider a colpitts oscillator, taking into account the resistance $r_3$ in<br>series with $L_3$ , show that $\omega^2 = \frac{1}{L_3} \left[ \frac{1}{C_1} + \frac{1}{C_2} \left( 1 + \frac{r_3}{R_o} \right) \right]$ . Draw the circuit.                                                             | 6 |  |  |
|    | (B)                                        | Derive an expression for the frequency of oscillation of a Wein bridge oscillator circuit.                                                                                                                                                                                                              | 6 |  |  |

- (C) For a typical BJT RC phase shift oscillator, derive an expression for each 8 of the following: frequency of oscillations, phase of the loop gain and minimum value of  $h_{fe}$ .
- 4. (A) Determine the necessary transformer turn ratio for transferring 6 maximum power to a  $16\Omega$  load from a source that has an output impedance of  $10 \text{ K}\Omega$ . Also calculate the voltage across the external load if the terminal voltage of the source is 10V rms.
  - (B) What do you understand by multistage transistor amplifier? Mention its 6 need. Draw a typical transformer coupled multistage amplifier.
  - (C) How does the RC coupled transistor amplifier operate? Draw its circuit 8 diagram and the low frequency model.
- 5. (A) Determine the input power, output power, and efficiency resulting in a class B amplifier providing a signal of 20 volt peak to a 10 Ohm load, 6 using a single supply of  $V_{cc} = 30v$ .
  - (B) Derive an expression for the conversion efficiency of a class A power amplifier circuit. Explain the operation of series fed Class A power amplifier circuit.
  - (C) With a circuit diagram of class A push pull power amplifier circuit, 8 explain its working. Mention the advantages of a push pull system.
- 6. (A) Show that the input impedance of the RC network of a RC phase shift 6 oscillator at the frequency of oscillation is (0.83-j2.7)R.
  - (B) Derive an expression for the frequency of oscillation of the Colpitts 6 oscillator circuit.
  - (C) For a parallel resonant circuit, prove mathematically how the circuit 8 tends to become more selective and illustrate the resonance curve.