Reg.	No.
ILUG.	110.

MANIPAL INSTITUTE OF TECHNOLOGY

(A Constituent Institute of Manipal University) Manipal – 576 104

IV SEMESTER B.Tech.(BME) DEGREE MAKEUP EXAMINATIONS JUNE/JULY 2016 SUBJECT: DIGITAL SYSTEM DESIGN (BME 2203) (REVISED CREDIT SYSTEM)

Tuesday, 5th July 2016: 2 pm to 5 pm

TIME: 3 HOURS

MAX. MARKS: 100

Instructions to Candidates:

- 1. Answer all FIVE full questions.
- 2. Draw labeled diagram wherever necessary

1.	(a)	What is a "Semicustom IC" and explain. How it is different than a standard IC.	07
	(b)	Draw the "Y-chart" and explain it considering a digital system, either referring to BOTTOM UP or TOP DOWN design.	08
	(c)	Give the difference between TTL and CMOS gates. Draw the circuit of a CMOS inverter gate and explain.	05
2.	(a)	Describe the major process steps which are considered during the fabrication of NMOS transistor.	08
	(b)	Realize the following (as per the given specification): (i) Implement the function $F1 = AB + AC + BC$; using OAI logic. (ii) Implement the function $F2 = (A' + B)(C + D')$; use AOI logic	06
	(c)	Draw the circuit of a CMOS NOR circuit and explain its operation.	06

- 3. (a) What is Application Specific Integrated Circuits (ASICs)? What are its benefits and the limitations?
 - (b) Explain how Programmable Logic Array (PLA) device is different than Programmable
 Array Logic (PAL) device? Design a full adder circuit using PLA device.

	(c)	Explain architecture of <i>Field-Programmable Gate Arrays (FPGAs)</i> along with the following details:	
		(i) Configurable logic block	08
		(ii) Switch Matrix	
4.	(a)	Explain how FPGA is different than other simple programmable logic devices (PLDs).	04
	(b)	Write a Verilog HDL code for synthesizing the following:	
		i. 2 to 4 Decoder	10
		ii. Full Adder	
	(c)	Describe "behavioral style" of digital system design using Verilog HDL with an example.	06
5.	(a)	What is VLSI technology? Explain classification ICs based on integration.	06
	(b)	Explain the following:	
		(i) always @() statement	
		(ii) and A (z1,x,y); statement	06
		(iii) `timescale 10ns/10ns	
	(c)	Define Shannon's theorem for realisation of digital hardware. Expand the function,	00
		$F = W_1 W_3 + W_1 W_2 + W_1 W_3$ using Shannon's theorem and implement it using a multiplexer:	08