

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

IV SEMESTER B.TECH (CHEMICAL ENGINEERING) END SEMESTER EXAMINATIONS, MAY 2016

SUBJECT: CHEMICAL ENGINEERING THERMODYNAMICS-II [CHE 2201]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 100

Instructions to Candidates:

✤ Answer ALL questions.

• Missing data, if any, may be suitably assumed.

1A.	The molar enthalpy of a binary solution at constant T and P is given by the relation $H = 500x_1 + 1000x_2 + (50x_1 + 40x_2)x_1x_2$ where <i>H</i> is in J/mol. Determine $\overline{H_1}$ and $\overline{H_2}$ as functions of x_1 and the numerical values of the pure component enthalpies H_1 and H_2 .										
1B.		08									
1C.	Derive the expression for showing the effect of temperature and pressure on chemical potential.										
2A.	Derive different forms of Gibbs-Duhem equation.										
2B.	The concept of an ideal gaseous solution is less restrictive than that of an ideal gaseous solution. Justify the statement. Explain Raoult's law.										
2C.	Derive an expression for fugacity coefficient of a gas obeying the following equation of state $P = \frac{RT}{V-b} - \frac{a}{T^{0.5}(V+b)V}$ where a and b are empirical constants.										
3A.	Discuss with a sketch, the boiling point diagram at constant pressure.										
3B.	Discuss positive and negative deviation from ideality in non-ideal solutions.										

3C.	 The system n-pentane(1)- n-hexane(2)-n-heptane(3) forms an ideal solution. Given the vapour pressure of the components at 70°C, P₁^S = 2129.57 Torr, P₂^S = 785.82 Torr, P₃^S = 303.99 Torr. Determine the composition of the (a) Liquid which is in equilibrium with a vapour of composition y₁=0.45, y₂=0.3 and y₃=0.25 at 70°C. (b) Vapour which is in equilibrium with a liquid of composition x₁=0.25, x₂=0.35 and x₃=0.4 at 70°C. 										3 0 5	05		
4A.	64.5°C and 760 Torr with $x_1=0.655$. Dete P-x-y diagram for the system at 64.5°C. Given the Antione constants Chloroform (1) 6.9546 Acetone (2) 7.1171					BC1170.966226.2321210.595229.664							10	D
4B.	given below x_1 y_1 P, kPa x_1 y_1 P, kPa	y1 0 P, kPa 24.46 x1 0.643 y1 0.566		.141 0.227 .507 0.524 6.52 47.45 702 0.750 678 0.578 .61 47.65		0.304 0.531 48.32 0.834 0.641 -6.01	0.8 0.0 44	0.40 0.54 48.5 878 670 52	$\begin{array}{c ccccc} 0.2 & 0.40 \\ \hline 40 & 0.54 \\ \hline 54 & 48.7 \\ \hline 0.896 \\ \hline 0.723 \\ \hline 43.35 \\ \hline \end{array}$		468 543 .73 0.915 0.753 42.99	0.552 0.548 48.78 5 1.00 5 1.000 5 35.12	e 10	D
5A.	The equilibrium constant at 298 K for the vapour phase hydration of ethylene to ethanol according to the reaction $C_2H_4 + H_2O \rightarrow C_2H_5OH$ is 14.86 and the standard heat of reaction at 298 K is -45.95×10^3 J. The specific heat data is as follows.												06	6
5B.	Ammonia synthesis reaction is represented by $N_2 + 3H_2 \rightarrow 2NH_3$ The reactant stream consists of 1 mol N_2 , 3 mol H_2 and 2 mol argon. The temperature and pressure of the reaction are 675 K and 20 bar. The equilibrium constant for the reaction is 2×10^{-4} . Determine how the conversion of nitrogen is affected by the presence of argon.											e 08	B	
5C.	For a mixture of acetic acid and toluene containing 0.486 mole fraction toluene, the partial pressures of acetic acid and toluene are found to be 0.118 bar and 0.174 bar respectively at 343 k. The vapour pressures of pure components at this temperature are 0.269 bar and 0.181 bar for toluene and acetic acid respectively. The Henry's constant for acetic acid is 0.55 bar. Calculate the activity and activity coefficient for acetic acid in the mixture. (a) Based on Lewis- Randall rule (b) Based on Henry's law.											06	6	