Reg. No.										
----------	--	--	--	--	--	--	--	--	--	--

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

IV SEMESTER B.TECH (CHEMICAL ENGINEERING) END SEMESTER MAKEUP EXAMINATIONS, JUN/JUL 2016

SUBJECT: CHEMICAL ENGINEERING THERMODYNAMICS-II [CHE 2201]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 100

Instructions to Candidates:

✤ Answer ALL questions.

Missing data, if any, may be suitably assumed.

	Calculate the fugacity of propane at 12 bar and 310 K using the following data.												
1A.	P, bar	1.7	3.4	6.8	10	2	11.7	1 1	13.6				
IA.	$V, m^3/kg$					468	0.03	382 (0.021		08		
	Given the	Given the molecular weight of propane is 44.											
1B.	The mola	enthalp	y of a bii	nary soluti	on at cons	tant T a	and I	P is give	en by the 1	elation			
	$H = 400x_1 + 600x_2 + (40x_1 + 20x_2)x_1x_2$												
	where <i>H</i> is in J/mol. Determine $\overline{H_1}$ and $\overline{H_2}$ as functions of x_1 and the numerical values												
	of the pure component enthalpies H_1 and H_2 .												
1C.	Discuss the tangent-intercept method for determining partial molar property.												
	The activi	The activity coefficient of thallium in amalgams at 298 K are given below.											
	<i>x</i> ₂	0 (0.00326	0.01675	0.04856	0.09	986	0.168	0.2701	0.424			
2A.	γ_2	1.0	1.042	1.231	1.776	2.81	1	4.321	6.196	7.707	10		
	Determine the activity coefficient of mercury (component 1) in the solution.												
						-							
2B.	Prove that if Henry's law is obeyed by component 1 in a binary solution over certain concentration range, Lewis-Randall rule (Raoult's law) will be obeyed by component										06		
ZD.	2 over the same concentration range.										00		
2C.	Derive the expression for the effect of temperature and pressure on activity.												
3A.	Discuss with a sketch, maximum and minimum boiling azeotrope.										06		

3B.	pressure over the system is 101.3 kPa. Using the vapour pressure data given below draw the boiling point diagram.											
	T, k 371.4			378		383	38		393	398		07
	P_A , kPa	101.3	3	125.3		140.0			179.9	205		
	P_B, kPa	55.6		64.5 7		4.8 86.6		101.3				
	2-propanol and 1-propanol forms an ideal solution. Prepare P-x-y diagram at 90° C. The Antoine constants are											
3C.				А					C	С		
	2-propanol (1)			8.8	8.87829			0.330	25	252.636		
	1-propanol (2)			8.3	8.37895			3.020	22	27.438		
4A.	A mixture contains 45% (mol) methanol (A), 30% (mol) ethanol (B) and the rest n- propanol (C). Liquid solution may be assumed to be ideal and perfect gas law is valid for the vapour phase. Calculate at a total pressure of 101.3 kPa, the bubble point and the vapour composition. The vapour pressures of the pure liquids are given below.										10	
-74	Temperat	333			343		353		363			
	<i>P_A</i> , <i>kPa</i> 81.97				133.29			186.61		266.58		
		<i>P_B</i> , <i>kPa</i> 49.32			73.31			106.63		166.61		
	P_{c}, k	<i>P_C</i> , <i>kPa</i> 39.32				.65	93.30			133.29		
4B.	The follow whether th X Y P, The vapou	e data a <u>1 0.</u> <u>1 0.</u> kPa 5.	re ther .122 .474 .57	rmodyr 0.163 0.531 6.02	amical 0.226 0.562 6.38	lly consis 0.320 0.582 6.76	tent b 0.33' 0.589 6.80	y slope of 7 0.437 9 0.620 7.02	ln γ me 0.440 0.619 7.04	ethod. 0.579 0.685 7.30	0.830 0.849 7.78	10
5A.	Derive van't Hoff equation for showing the effect of temperature on equilibrium constant.										08	
5B.	For the vapour phase hydration of ethylene to ethanol according to $C_2H_4 + H_2O \rightarrow C_2H_5OH$ The equilibrium constants were measured at temperature 420 K and 600 K. They are 6.8×10^{-2} and 1.9×10^{-3} respectively. The specific heat data is as follows. $\boxed{c_p, J/\text{mol K}}$ Ethylene $11.886 + 120.12 \times 10^{-3}T - 36.649 \times 10^{-6}T^2$ Water $30.475 + 9.652 \times 10^{-3}T + 1.189 \times 10^{-6}T^2$ Ethanol $29.358 + 166.9 \times 10^{-3}T - 50.09 \times 10^{-6}T^2$ Develop general expressions for the equilibrium constant and standard free energy									ey are	12	