III SEMESTER B.TECH (CHEMICAL ENGINEERING) END SEMESTER EXAMINATIONS, MAY 2016

SUBJECT: CHEMICAL PROCESS CALCULATIONS (CHE 2101)

Time: 3 Hours

REVISED CREDIT SYSTEM

MAX. MARKS: 100

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitably assumed.
- ✤ Use of humidity chart permitted

1A	Convert:	
	i. 3 atm. to N/cm2	
	ii. 10 cm Hg to dynes/ cm2	
	iii. 25 ft. of water to kPa	
	iv. 10 psi(g) vacuum to mm Hg absolute	
	v. 20 psi to cm of Hg. (S.G. of mercury $=13.6$)	12
1B	A solution of Caustic Soda (NaOH) in water contains 20% by wt. of NaOH at 333K. The density of the solution is 1.196 kg/lit. Find the molarity, normality and molality of the solution.	8
2.4	A substitution and the substitution of the substitution is substituted and have a line the	
ZA	A solution containing sodium sulfate in water is crystallized out by cooling the solution to 5°C. The original solution is saturated to 40°C and deca-hydrate crystals are obtained. Estimate the wt. of crystal obtained by cooling a batch of 2000 kg of this solution.	10
	Solubility at $40^{\circ}C = 32.6 \%$	
	Solubility at $5^{\circ}C = 5.75$ %	
	Both solubilities have units of kg Na_2SO4/kg solution	
	(Molecular Wts: $Na_2SO_4=142$, $Na_2SO_4.10H_2O=322$)	
2B	A waste acid from a nitration process contains 21 % HNO_3 , 55 % H_2SO_4 , and 24 % water. The acid is to be concentrated to contain 28 % HNO_3 , 62% H_2SO_4 by wt. by the addition of conc. H_2SO_4 and HNO_3 having concentrations 93 % and 90% by wt. respectively. Calculate the weight of the waste acid and conc. acid required to obtain a product of 1000kg.	10
3A	Determine the flue gas analysis and air-fuel ratio by wt. when a fuel oil with 84.5% C, 11.8% H ₂ , 3.2 % S, 0.4% O ₂ , 0.1% ash is burned with 25% excess air.	12
3B	In the Decon process of manufacturing Chlorine gas, HCl gas is oxidized with air. The reaction is given as $4HCl+O_2 \rightarrow 2Cl_2+2H_2O$ If the air is used in 30% excess & the reaction is 70% complete, calculate the	
	composition of the dry gas leaving	8

4	 A gas mixture flowing through a pipe line contains 4% oxygen by volume a rest an inert gas. The flow rate is 500 m³/ min. It is desired to increase the ox content of the gas so that the leaving gas contains 8% by oxygen by volume. i) Calculate the rate of addition of oxygen, ii) If the change in composition is caused by pure air, find the rate of addition of pure air, iii) Find the volume of gas mixture leaving under condition (ii) iv) What is the composition in wt% of gas leaving under condition (ii) iv) What is the average molecular wt. of the leaving gas mixture? 	nd kygen 12
4	 Fresh orange juice contains 12% solids and balance water, the concentrated contains 42% solids. In the present process the evaporator is bypassed with fraction of fruit juice. The juice that exits out of the evaporator is concentrated 58% solids and the product is mixed with fresh juice to achieve the concentration. Calculate Amount of concentrated fruit juice produce per 750 kg of fresh juice Fraction of feed that bypasses the evaporator. 	juice 8 vith a ted to final
5	The flue gases are leaving the chimney of a boiler at 300°C the composition of which are as follows. $CO_2=11.3\%$, $CO=0.26\%$, $H_2O=13$ $O_2=2\%$, $N_2=73.4\%$. Calculate Q in 100 kg mole of gas mixture above 25°C using the followi data (Kcal / Kg mole °K) $CO_2=6.396+10.1 \times 10^{-3} \text{ T} - 3.354 \times 10^{-7} \text{ T}^2$ $CO=6.48+1.566 \times 10^{-3} \text{ T} - 2.359 \times 10^{-7} \text{ T}^2$ $H_2O=6.732+1.505 \times 10^{-3} \text{ T} - 1.791 \times 10^{-7} \text{ T}^2$	molar .04%, ng C _p 15
5		nic or 5
6	 An air water vapor system at 1 atm. has a dry bulb temperature of 40°C and bulb temperature of 30° C. Determine The absolute humidity The % saturation The relative saturation The dew point The humid heat 	d wet 10
6	How many of each of the following are contained in 150.0 g of CO_2 44.01)? (1) mol CO_2 ; (2) lb-moles CO_2 ; (3) mol of Carbon (C); (4) mol of O; (5) r O_2 ; (6) gram of O; (7) molecules of CO_2 .	$(M = \begin{vmatrix} 10 \\ nol of \end{vmatrix}$