			_		
Reg.No.					

MANIPAL UNIVERSITY

Fourth Semester B.Tech. (Chemical Engineering) END SEMESTER EXAMINATION – MAY 2016 SUBJECT: HEAT TRANSFER OPERATIONS (CHE 208)

Time : 3 hrs

Max Marks: 100

• Answer any FIVE full questions and all questions carry equal marks.

Missing data, if any, may be assumed suitably.

4.4						
1A.	Derive an expression to determine the temperature distribution (T) and heat flow					
	(Q) for a hollow sphere with uniform internal heat generation.					
1B.	Consider a plane wall 100mm thick and of thermal conductivity 100 W/m.K.					
	Steady state conditions are known to exist with $T_1 = 400$ K and $T_2 = 600$ K.					
	Determine the heat flux and the temperature gradient dT/dx for the co-ordinate					
	systems shown below:					
	T(x) $T(x)$ $T(x)$					
	T_2 T_2 T_1					
	T_2 T_2 T_1					
	$(a) \qquad x \qquad x \qquad (b) \qquad x \qquad (c)$	(8 marks)				
2A.	What is critical radius of insulation?					
	Consider a steam pipe of 10 cm inner diameter and 11 cm outer diameter is					
	consider a steam pipe of 10 cm inner diameter and 11 cm outer diameter is covered with an insulating material ($k = 0.8 \text{ W/m.}^{\circ}\text{C}$). The steam temperature and					
	the ambient temperatures are 200°C and 20°C respectively. If the convective heat					
	transfer coefficient between the insulating surface and air is 8 $W/m^{2o}C$. Find the					
	critical radius of insulation. For this value of r_0 , calculate the heat loss per metre of nine and the outer surface temperature. Naclest resistance of the nine meterial	(10 monles)				
4 D	pipe and the outer surface temperature. Neglect resistance of the pipe material.	(10 marks)				
2 B .	A large vertical plate of 6m high and 1.2 m wide is maintained at a constant					
	temperature of 57°C and exposed to atmospheric air at 4°C. Calculate the heat loss					
	by free convection by the plate.					
	Properties of air at an average temperature of $30.5 ^{\circ}$ C:					
	Density = 1.16 kg/m^3 ; C _p = $1.007 \text{ KJ/kg} ^{\circ}\text{C}$;					
	Kinematic viscosity = $15.89 \times 10^{-6} \text{ m}^2/\text{sec}$; K = $26.3 \times 10^{-2} \text{ W/m}^{\circ}\text{C}$	(6 marks)				
2C.	Derive an expression for unsteady state heat conduction. State its assumptions.	(4 marks)				
3A.	A cylinder 1m long and 5cm in diameter is placed in an atmosphere at 45 °C . It is					
	provided with 10 longitudinal straight fins of material having k=120 W/m°C. The					
	height of 0.76mm thick fins is 1.27cm from the cylinder surface. The heat transfer					
	coefficient between cylinder and atmosphere air is 17 W/m ² .°C. Calculate the rate					
	of heat transfer and the temperature at the end of fins if surface temperature of					
	cylinder is 150°C.	(10 marks)				
3B	Define NTU and effectiveness of heat exchanger? Derive a relationship between					
	them for parallel type heat exchanger.	(10 marks)				
	them for paranel type near exchanger.					

4A.	Water is flowing at the rate of 10,000 kg/hr through the tubes of a water-water heat exchanger and is heated from 25 °C to 70 °C.Hot water at 90 °C is available but the minimum discharge temperature of the water has to be 76 °C.U _i of 25 mm diameter tube in a shell and tube exchanger is 900 kcal/hr m ² °C.If the hot water makes one shell pass and the design water velocity in the tube is 0.45 m/sec.Calculate length	
	of the heat exchanger. Assume correction factor for LMTD as 0.86.	(10 marks)
4B.	Water at the rate of 68 kg/min is heated from 35°C to 75°C by oil having a specific heat of 1.9 kJ/kg-K. The fluids are used in a counterflow and parallel flow double pipe heat exchanger, and the oil enters the exchanger at 110°C and leaves at 75°C. The overall heat transfer coefficient is 320 W/m ² .C. Calculate the heat exchanger area for counterflow and parallel flow heat exchangers independently. Assume $c_p = 4.180$ kJ/kg-K for water.	(10 marks)
5A.	Compare the efficiency of a plate fin of length (L) as 1.5cm and thickness 2.0 mm for the following 2 cases. (i)Fin material is made of aluminium (k=210 W/mK) and the heat transfer coefficient is 285 W/m ² K. (ii)Fin material is made of steel (k = 40 W/mK) and heat transfer coefficient is 510W/m ² K	(8 marks)
5B.	Write a short note on the following:	
	(i) Pool boiling	
	(ii) Nucleate boiling	
	(iii) Drop-wise condensation	(12 marks)
	(iv) Stefan Boltzmann law	(
6A.	A thin aluminium sheet with an emissivity of 0.1 on both sides is placed between two very large parallel plates that are maintained at uniform temperatures $T_1 = 800$ K and $T_2 = 500$ K and have emissivities $\varepsilon_1 = 0.2$ and $\varepsilon_2 = 0.2$, respectively. Determine the net rate of radiation heat transfer between the two plates per unit surface area of the plates and compare the result to that without the shield.	(8 marks)
6B.	Determine the heat transfer coefficient for water flowing in a pipe of 4.2 cm diameter at a velocity of 8 m/s. The temperature of the tube wall is 82°C and water enters at 25 °C and leaves at 57 °C. Physical properties of water are given below: $\rho = 990 \text{ kg/m}^3$ k = 0.63 W/mK $\mu = 7 \times 10^{-4} \text{ Ns/m}^2$ $C_p = 4160 \text{ J/kg °C}$ $\mu_{82 °C} = 3.54 \times 10^{-4} \text{ Ns/m}^2$ Use all the equations given below for finding out heat transfer coefficient:	
	Dittus-Boltzer equation, Sieder Tate equation and Coulburn j-H factor.	(12 marks)