Reg.No.					

MANIPAL UNIVERSITY

Fourth Semester B.E.(Chemical Engineering) END SEMESTER EXAMINATION – MAY 2016 SUBJECT: HEAT TRANSFER OPERATIONS (CHE 2202)

Time: 3 hrs Max Marks: 100

- Answer all questions.
- Missing data, if any, may be assumed suitably.

1A.	1						
	of a long cylinder of radius 'R' with uniformly distributed heat source having variation in thermal conductivity. Consider wall surface temperature as T _w .						
1B.	·						
	It is to be hardened by first cooling in an oil bath to a temperature of 100°C and The						
	heat transfer coefficient and the oil bath temperature are 700 W/m ² °C and 40 °C						
	respectively. What is the time required for this process? Properties of Stainless steel						
	are: $k = 61 \text{ W/m}^{\circ}\text{C}$, $\rho = 7865 \text{ kg/m}^{3}$, $C_p = 0.46 \text{ kJ/kg}^{\circ}\text{C}$						
2A.	<u>*</u>						
	known thermal conductivity,						
	thickness, $L_A = 0.3$ m and L_c						
	between materials A and C, is of known thickness, $L_B = 0.15$ m, but unknown thermal conductivity k_B . Under steady state conditions, measurements reveal an						
	outer surface temperature of 2	<u> </u>					
	air temperature of 800°C. T						
	W/m^2 . °C. What is the value of		incient n is known to be	25			
2B.							
20.	very large parallel plates that are maintained at uniform temperatures $T_1 = 800 \text{ K}$ and						
	$T_2 = 500 \text{ K}$ and have emissive		-				
	net rate of radiation heat trans	sfer between the two plate	es per unit surface area of	the (5 marks)			
	plates and compare the result to that without the shield.						
	2C. Aniline is to be cooled from 60.6°C to 21.1°C in the inner pipe of a double pipe heat						
	exchanger having outside area of 6 m ² . Toluene flows counter-currently to that of						
	aniline and it is entering jacket at 18.3°C. Calculate the outer temperature of toluene, LMTD and overall heat transfer coefficient.						
	Data given below may be use						
	Data Data	Aniline	Toluene	(7 marks)			
	Specific heat J/kg°C	2300	1800	(7 11141 115)			
	Flow rate kg/hr	4500	8000				
3A.	A copper fin of diameter 4 mm	n and length 25 mm is use	ed to transfer heat from a b	pase			
	surface at a temperature of 350 K to ambient air at 300 K by natural convection.						
	Calculate the heat transfer rate. Assume the fin tip to be adiabatic. The geometry is						
	assumed to be placed horizontally. Properties of air over the working temperature						
	range: $\gamma = 18.41 \times 10^{-6} \text{ m}^2/\text{s}$, Pr = 0.704, $k = 0.0282 \text{ W/m-K}$ and $\beta = 0.003 \text{ K}^{-1}$.						
	Properties of copper over the working temperature range: $k = 400 \text{ W/m-K}$.						

3B.	Derive the Prandtl's Analogy equation? What is Prandtl mixing length?	(10 marks)
3C.	The overall heat transfer coefficient due to convection and radiation for a steam pipe	
	at 200°C running in a large room at 30°C is 17.95 W/m ² °C. Calculate the heat	
	transfer coefficient due to convection and radiation. Take emissivity of pipe surface	(4 marks)
	as 0.8.	
4A.	What is Biot number? Derive an expression using Biot number for determination of	
	temperature and heat flow distribution for a plane wall with internal heat generation	
	rate.	(10 marks)
4B.	Cold water leading to a shower enters a thin walled double pipe counter flow heat	
	exchanger at 0.25 kg/s at 15°C and is heated to 45°C by hot water that enters at	
	100°C and 3 kg/s. If the overall heat transfer coefficient is 950 W/m ² -°C, determine	
	the heat transfer rate and the area of the heat exchanger by $\varepsilon - NTU$ method.	
	Assume specific heat of water to be 4180 J/kg°C.	(10 1)
	Given: $m_c = 0.25 \text{ kg/s}$, $m_h = 3 \text{ kg/s}$, $T_{ci} = 15 \text{ °C}$, $T_{hi} = 100 \text{ °C}$, $T_{co} = 45 \text{ °C}$,	(10 marks)
	$U = 950 \text{ W/m}^2 \text{°C}$	
5A.	A hot square plate (50 cm) at 100 °C is exposed to atmospheric air at 20 °C. Find the	
	heat loss from both surfaces of the plate.	
	i) if the plate is kept at vertical plane	
	ii) if the plate is kept in horizontal plane	
	Air properties at an average temperature of 60 °C:	
	Density = 1.06 kg/m^3	
	$C_p = 0.24 \text{ kcal/kg }^{\circ}\text{C}$ $v = 18.99 \times 10^{-6} \text{ m}^2/\text{sec}$	(6 marks)
	$k = 2.49 \times 10^{-2} \text{ kcal/hr m}^{\circ}\text{C}$	(U marks)
5B.	Water is passed through annular space of 5 cm outer tube diameter and 3 cm inner	
ЭВ.	tube diameter at 0.5 m/sec velocity. Wall temperature of inner tube is maintained at	
	80°C.Inlet water temperature is 20°C.Find heat transfer coefficient between water	
	and tube. Data are given below:	
	Density of water = 988 kg/m^3 , C_p at constant pressure = $0.993 \text{ kcal/kg}^{\circ}\text{C}$	
	Thermal conductivity of water = 0.557 kcal/hr.m°C,	
	kinematic viscosity = $0.55 \times 10^{-6} \text{ m}^2/\text{sec}$, viscosity correction factor = 1	(8 marks)
5C.	(i)What are the differences between film-wise condensation and drop-wise	
	condensation?	
	(ii) Explain about heat transfer in liquid metals and heat transfer in fluidized bed	
	reactor?	(6 marks)