| Reg. No. |  |  |  |  |  |  |  |  |  |  |  |
|----------|--|--|--|--|--|--|--|--|--|--|--|
|----------|--|--|--|--|--|--|--|--|--|--|--|



# Manipal Institute of Technology, Manipal



(A Constituent Institute of Manipal University)

## IV SEMESTER B.TECH (CHEMICAL ENGINEERING)

#### **END SEMESTER EXAMINATIONS, MAY 2016**

### SUBJECT: MASS TRANSFER -I (CHE 2203)

#### **REVISED CREDIT SYSTEM**

Time: 3 Hours

MAX. MARKS: 100

#### Instructions to Candidates:

Answer **FIVE FULL** questions. Missing data may be suitably assumed.

| 1a      | Estimate the diffusivity of Acetone ((CH <sub>3</sub> ) <sub>2</sub> CO; MW=58, Boiling point is 56 $^{0}$ C) through air (MW= 29) at STP condition. Data is provided below.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |  |  |  |  |  |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|--|
| 1b      | Calculate the rate of diffusion of acetic acid across a film of equi-molal counter current diffusing water solution (2 mm thick at 17 <sup>0</sup> C) when the mole fraction of acetic acid at two locations in solution are 0.0288 and 0.0092. The diffusivity of acetic acid in water at this conditions is $9.5 \times 10^{-10} \text{ m}^2/\text{s}$ . The $\frac{P}{M_{equ}} = 53.6 \text{ kmol/m}^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |  |  |  |  |  |
| 2<br>3a | It is desired to dry 20 kg of soap from 18% moisture (MW=18) by weight to a desirable value<br>in three stages by contact with hot air (MW=29). The wet soap is placed in container of total<br>volume of 9 m <sup>3</sup> out of which 2 m <sup>3</sup> is occupied by wet soap and rest is air at 350 K, 1 atm and<br>water vapor partial pressure is 2 kPa. The system is allowed to reach equilibrium and then air<br>is replaced with fresh air with original moisture content and same conditions. What is the<br>final concentration of soap after three stages? Assume the change in soap volume due to loss<br>of moisture is negligible in all stages. The equilibrium data of X and Y is given below.<br>$\frac{X (mole ratio)}{V (mole ratio)} 0.025 0.05 0.085 0.145 0.182 0.235}{0.065 0.073}$<br>Estimate average mass transfer coefficient of pure oxygen at 10 atm and 25 °C into water<br>flowing as film down a vertical wall of 1m high and 6 cm width at a Reynolds number of 60<br>without ringlog. The diffusivity of ovygen in water 2 5x10 <sup>-9</sup> m <sup>2</sup> /g | 20 |  |  |  |  |  |
| 3b      | <ul> <li>i) Define gas, liquid holdup</li> <li>ii) Draw a graph representing the liquid rate vs gas rate in gas liquid operations and explain the various mechanical difficulties arises in equipment due to gas and liquid</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |  |  |  |  |  |
| 4a      | Calculate the minimum steam rate for given stripper and compute the number of stages with<br>1.5 times of minimum steam rate. (counter current)<br>The oil with a circulation rate of $3 \times 10^{-3}$ kmol/s, is entering to stripper with 1% by volume<br>against fresh steam to reduce the oil concentration to 0.5% by volume. The relation of liquid<br>and gas mole ratios as follows $\frac{Y}{Y+1} = 3.16 \frac{X}{X+1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |  |  |  |  |  |
| 4b      | Hydrogen gas at 2 atm and 25 $^{0}$ C flows through a pipe made of unvulcanised neoprene rubber.(I.D= 25 mm and O.D= 50 mm). The solubility of H <sub>2</sub> is 0.053 cm <sup>3</sup> (STP)/cm <sup>3</sup> .atm and diffusivity is $1.8 \times 10^{-10}$ m <sup>2</sup> /s. Estimate the rate of loss of hydrogen diffusion per meter of pipe length.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5  |  |  |  |  |  |

