	100	1	
1	5	1	6
1	1		
1			

275)		1		
Reg. No.		ā		

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

VI SEMESTER B.TECH (OPEN ELECTIVE) END SEMESTER (MAKE UP) EXAMINATIONS, JULY 2016 - Make UP

SUBJECT: RADIATION PHYSICS [PHY 322]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates

- * Answer ANY FIVE FULL questions.
- Missing data may be suitable assumed.

1A.	Explain the different available methods to obtain fast electrons and heavy charged particles.	5
1B.	A radioactive sample contains 3.50 μg of pure $_6 C^{11}$, which has a half-life of 20.4 min.	3
	(a) Determine the number of nuclei in the sample at t = 0.	
	(b) What is the activity of the sample initially and after 8.00 h?	
1C.	What is the minimum gamma-ray energy required to produce photo-neutrons in water from the trace heavy water content?	2
2A.	Discuss the different interaction mechanisms of gamma radiation with matter.	5
2B.	Explain the Bragg Curve and Range of heavy charged particle	3
2C.	Estimate the time required for a 5MeV alpha particle with a range of 25µm to slow down and stop in silicon.	2
3A.	Explain the interaction of fast electrons in an absorbing medium.	5
3B.	Sketch the transfer curve for a p-channel JFET with I_{DSS} = 4 mA and V_P = 3 V.	3
3C.	What are the differences between D-MOSFET and E-MOSFET?	2

4A.	Discuss the fabrication, working and characteristics of <i>n-channel</i> D-MOSFET.	5
4B.	Explain the process of production of scintillation in inorganic scintillators.	3
4C.	If an inverting amplifier has R_{in} = 100 $k\Omega$ and R_f = 500 $k\Omega$ then what output voltage results for an input of 2 V?	2
5A.	Explain the construction and working of proportional counter.	5
5B.	A GM tube with a cylindrical cathode 5cm in diameter and a central wire of diameter 0.012cm is filled with Argon to a pressure such that the mean free path is 7.8 × 10 ⁻⁴ cm. Calculate the value of the voltage that must be applied to just produce an avalanche. (The ionisation potential of Argon is 15.7volt).	3
5C.	What are the different geometries of gas filled detector? Explain.	2
6A.	Describe the method of thickness measurement using nuclear measurement system.	5
6B.	Consider a tank of height 1.5m in a nuclear radiation absorption measurement system. If the tank is empty, a dose meter coupled to a linear detector indicates a voltage of 32 V proportional to the intensity; for a full tank it reads 2V. Let the measurement system be compensated by a voltage of 2V with reverse polarity yielding 0V for empty tank. Determine the level position and the measurement accuracy when the output fluctuation is ± 0.5 V for mean value of 21V (at unknown level).	3
6C.	Draw the schematic labelled diagram of an isotopic belt weigher system for quantity measurement.	2

PHY 322 Page 2 of 2