

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

IV SEMESTER B.TECH (CSE/ I&CT/CC)

END SEMESTER EXAMINATION, MAY 2016

SUBJECT: ENGINEERING MATHEMATICS IV [MAT-2206]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

✤ Answer ALL the questions.

✤ Missing data may be suitable assumed.

1A.	It is suspected that a patient has one of the 3 diseases A_1 , A_2 , A_3 . Suppose that the population percentages suffering from these illness are in the ratio 2:1:1. The patient is given a test which turns out to be positive in 25% of cases of A_1 , 50% cases of A_2 , 90% cases of A_3 . Given that out of 3 tests taken by the patients, 2 are positive. Find the probability that he has illness A_1 .	4
1B.	In a bombing actions, there is 50% chance that any bomb will strike the target. Two direct hits are needed to destroy the target completely. How many bombs are required to be dropped to give a 99% chance or better for completely destroying target?	3
1C.	Let X_i and Y_i , $\models 1,,25$ be two independent samples from normal distributions $N(0,16)$ and $N(1,9)$ respectively. Let \overline{X} and \overline{Y} denote the corresponding sample means. Compute $P(\overline{X} > \overline{Y})$.	3
2A.	If x is a random variable taking values $0, 1, 2,$ with pdf $p(x) = ab^x$ where a and b are positive numbers such that $a + b = 1$. Find the m.g.f of X. If $E(x) = m_1$ and $E(x^2) = m_2$. Show that $m_2 = m_1 (2m_1 + 1)$.	4
2B.	Let x_1, x_2, \ldots, x_n be a random sample of size n from $N(\theta_1, \theta_2), -\infty < \theta_1 < \infty$ and $\theta_2 > 0$. Then find MLE for θ_1 and θ_2 .	3
2C.	Two independent observations X_1 and X_2 are made on a random variable X with pdf $f(x;\theta) = \theta x^{\theta-1}$, $0 < x < 1$, where $\theta > 0$. To test $H_0: \theta = 1$ against $H_1: \theta = 2$, it is decided to reject H_0 if $x_1x_2 > \frac{3}{4}$. Obtain the power of the test.	3
3A.	Let X, Y be 2 independent random variables having pdf $f(x) = e^{-x}, 0 < x < \infty$ and $g(y) = 2e^{-2y}, 0 < y < \infty$. Find the pdf of $Z = X + Y$.	4

	1	Reg. No.											
म्हानं ब्रह्म Manipal	Manipal Institu (A Constituent	te of Te Institute of	ech Mar	n nipal	olo Un)gy iver	7 , N sity]	/Ia	ni	pa	1	KNOWLED	GE IS
IRED BY	_IFE		-1 41		<u>T1</u>	41			- 1 -		- 0 -		
3B.	the other till the last defective defective tube is obtained in the a). 2^{nd} test. b). 3^{rd} test c). 4^{th} test.	tube is for	a tu and.	Find	1 th	e pi	s are obał	oility	that	the	alle las	t	3
3C.	Suppose that the joint pdf of the is given by $f(x, y) = \begin{cases} x^2 + \frac{x}{2} \\ 0 \end{cases}$ Compute i) $P\{X > \frac{1}{2}\}$ ii) $P\{Y < 1\}$	two dimensio $\frac{xy}{3}$; $0 < x < 0$; el X}.	nal 1, sew	rand 0 < vhet	om ` < y re	varial < 2	ble (?	X,Y))				3
4A.	A computer in adding number Suppose that all rounding error (-0.5,0.5). If 1500 numbers are the total error exceeds 15? How the magnitude of the total error is	s rounds ea ors are inde added what w many numb s less than 10	ch i pend is t pers with	numb lent he p may n pro	er and roba be bab	off t unif ability adde ility	o th ormly that ed to 0.9?	e no y di t the ogetho	eares stribu mag er ind	t int ited gnitua ordei	teger ove de o r tha	r f t	4
4B.	A random sample of size 15 and $s^2 = 4.24$. Determine a 9	from a norm 20% confiden	al c	listri	outio val	n N for	$\sqrt[3]{(\mu,\alpha)}$	(5^2)	yields	5 x =	= 3.2	;	3
4C.	The distribution of blood groups is predicted to be 53%, 2% sample of 200 people are test belong to the respective groups. level of significance?	A, AB, B, and , 4%, and ed and 98, . Is the data	and 1 4 10, con	O an 1%, 12 sister	nong res , and	g the spect d 8(ith tl	pop ively.). P ne h <u>y</u>	oulatio To eople ypoth	on o veri e are nesis	far ifytl fou at	region nis, a nd to 0.05	n a) ;	3
5A.	Steel rods are manufactured to b are inside the limits 2.99 inches as oversize and 5% are reject normally distributed, find the st the proportion of rejects if perm 3.015 inches.	be 3 inches in and 3.01 inc cted as under andard devia hissible limits	n dia hes. ersize tion are	mete It is e. A of t wide	r bu obs ssum he c med	t the servening listrit betw	y are d tha that pution ween	e acc at 5% the n. H 2.98	eptal 6 arc dian ence 85 in	ble if e rej neter cala	f they ected are culate and	/ 1 e 1	4
5B.	With the usual notation, Prove t a,b,c,d are constants.	hat $\rho_{zw} = \pm \rho$	XY	if Z	= a.	X+b	and	w =	= cY	+d v	where	e	3
5C.	Suppose that X is uniformly dist find the pdf of Y, say $g(y)$. Als	tributed over o verify that	(-1, g(y))	1).) is a	Let 1 pdf	<i>Y</i> =	4-2	X^{2} .	Sket	ch Y	and	ł	3