

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

IV SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING)

END SEMESTER EXAMINATIONS, MAY, 2016

SUBJECT: DIGITAL SYSTEM DESIGN & COMPUTER ARCHITECTURE [ELE 2203]

REVISED CREDIT SYSTEM

Time: 3 Hours			12 MAY 2016 MAX. MA	X. MARKS: 50							
Instru	uctio	ns to	o Candidates:								
	*	Ansv	ver ALL questions.								
	 Missing data may be suitable assumed. 										
1A.	i) W	rite a	technical note on								
	a)	Czoc	chralski crystal growth b) photolithography.								
	ii) Li	ist 4 I	FPGA programming Technologies.	(03)							
1B.	Write Verilog code to implement the function f $(x1, x2, x3, x4) =$										
	$\sum m(1,2,4,5,6,7,8,10)$ using the gate level primitives. Ensure that the resulting circuit is as										
	simp	ole as	possible.	(02)							
1C.	Implement a 4 bit Excess 3 to BCD code converter using 3 to 8 decoders and residual gates.										
	Write a function for 3 to 8 decoder. Using this function, write Verilog code for the code										
	converter.										
2A.	Write the Verilog code for a configurable n:1 multiplexer										
2B.	Write a behavioral Verilog code for a presettable counter which counts from 3 to 13, with										
	asynchronous active low clear and negative edge triggered clock.										
2C.	Write a behavioral Verilog HDL code for a 8 bit Universal Shift register, with the following										
	spec		lons. IJ Synchronous , active high clear iij negative edge triggered clock								
	51	50	Operation								
	0	0	Hold the previous data								
	0	1	Right shift by 1 bit, with rin as right serial input								
	1	0	Left Shift by 1 bit, with lin as left serial input								
	1	1	Load the 8 bit data	(03)							

3A. Draw the circuit for the Verilog code given below:

always @(posedge Clock) begin Q1 = D; Q2 = Q1; end endmodule

Rewrite the complete code with port declarations, using nonblocking assignment. Draw the synthesized circuit for the same. (

(04)

3B. Write a behavioral Verilog code for the ASM chart shown.

- 3C. Implement f (a,b,c) = $\Pi M(1,2,4,7)$ and Z(a,b,c) = $\sum m(1,2,4,7)$ using PLA.
- 4A. Given an instruction set and the corresponding relative frequency, encode using Huffman's method and calculate the redundancy.

Instruction	10	I1	I2	I3	I4	15	I6	Ι7]
Relative frequency count	0.01	0.05	0.15	0.01	0.09	0.07	0.29	0.33	(0

(03) (04)

(03)

(04)

(02)

4B. Perform $60_H / 15_H$ by non restoring division algorithm.

- 4C. Assume main memory has 4 page frames and initially all page frames are empty. Consider the following stream of references: 1,2,6,2,1,4,5,3,1,4,5,3 Calculate the hit ratio when the following types of replacement policies are used.
 i)FIFO ii) LRU
- 5A. Given the register transfer description, develop the control signals and design the processing section for the following algorithm, using Hardwired approach

Declare registers: A[4], M[4], Q[5], L[3]; Declare buses: In bus[4], Out bus[4];

Start : $A \leftarrow 0$, $M \leftarrow$ Inbus, $L \leftarrow 0100$;

 $Q[4:1] \leftarrow \text{In bus, } Q[0] \leftarrow 0;$

Loop: if Q[1:0] = 01 then goto ADD; if Q[1:0] = 10 then goto SUB;

goto RShift;

ADD: $A \leftarrow A+M$;

Goto RShift;

SUB: $A \leftarrow A-M$;

RShift: Arithmetic Right Shift content of AQ register, L←L-1; If L<>0 then go to loop Outbus=A; Outbus=Q[4:1];

Halt: Go to Halt.

(07)

(03)

5B. Consider 850 X 90 bit microprogram stored in a single memory and 300 out of 850 instructions are unique. Find the savings in bits if nanomemory is used instead of a single memory store.

Electrical & Electronics Engineering