Reg. No.								
----------	--	--	--	--	--	--	--	--

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

IV SEMESTER B.TECH END SEMESTER EXAMINATIONS, MAY 2016

SUBJECT: MATLAB FOR ENGINEERS [ELE 3287]

(OPEN ELECTIVE - I)

REVISED CREDIT SYSTEM

Time: 3 Hours

17 MAY 2016

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- Missing data may be suitably assumed.
- Write clearly the code, input and output
- 1A. Define the variables a, b, c and d as: a = 15, b = -7.6, c = 61.34 and d = 0.5(ac b), then evaluate

I.
$$a + \frac{ab}{c} \frac{(a+d)^2}{\sqrt{|ab|}}$$

II. $de^{\left(\frac{d}{2}\right)} + \frac{\frac{ad+cd}{2}}{(a+b+c+d)}$

1B. Create a 5x7 matrix A with elements (integer) randomly distributed between -50 and 50.

- I. Create a 3x5 matrix B from 1st, 3rd and 4th rows, and the 1st, 3rd through 5th and 7th columns of the matrix A
- II. Create a 17 elements-long row vector U from elements of the 3rd row and the 5th and 7th columns of matrix A.
- 1C. The equation for the correlation coefficient is given by

$$r = \frac{n(\sum xy) - (\sum x)(\sum y)}{\sqrt{[(n\sum x^2) - (\sum x)^2][(n\sum y^2) - (\sum y)^2]}}$$

- $\sum x$ is the sum of x value; $\sum x^2$ is the sum of square of x value
- $\sum y$ is the sum of y value; $\sum y^2$ is the sum of square of y value

 $\sum xy$ is the sum of the product of the corresponding x and y values

n is the number of points included in the fit

	-3.78									
у	-5.62	-3.3	-2.05	-2.83	-1.16	0.52	0.21	1.73	3.92	4.26

Develop an algorithm that takes input data point (x, y) and give output r.

(04)

(03)

(03)

- 2A. Use Matlab to show that the sum of infinite series $\sum_{n=1}^{n} \frac{1}{n^2}$ converges to $\pi^2/6$. Do it by computing the sum for:
 - a) n = 100
 - b) n = 1000
 - c) n = 10000

Also find the error in each case.

2B. Calculate the range a ball would travel when it is thrown with an initial velocity of 20 m/s at an angle θ . Calculate this range for all angles between 0° and 90° in 5° steps. Determine the angle θ that result in maximum range for the ball. Plot the trajectory (x, y) of the ball for angles between 5° and 85° in 20° increments with different colors. Plot the maximum range trajectory with a thicker line. g = 9.81 m/s².Label the axes and add a title to the plot.

$$V_x = V\cos(\theta), \quad V_y = V\sin(\theta), \quad t_{max} = \frac{2V\sin(\theta)}{g}$$
 (04)

- 2C. The graph of the function $f(x) = ax^3 + bx^2 + cx + d$ passes through the points (-2, -3.4), (-0.5, 5.525), (1, 16.7) and (2.5, 70.625). Determine the constants a, b, c, d. (03)
- 3A. A simply supported beam that is subjected to a constant distributed load w over half of its length. The deflection y as a function of x is given by the equations:

$$y = \frac{-wx}{384EI} (16x^3 - 24Lx^2 + 9L^3) \text{ for } 0 \le x \le \frac{L}{2}$$
$$y = \frac{-wL}{384EI} (8x^3 - 24Lx^2 + 17L^2x - L^3) \text{ for } \frac{L}{2} \le x \le L$$

Where E is the elastic modulus, I is the moment of inertia and L is the length of the beam. For the beam L = 20m, E = 20 x 10^9 Pa (steel), I = 348 x 10^{-6} m⁴ and w = 5 x 10^3 N/m. Make the plot of the deflection of the beam y as a function of x. (03)

3B. The nth Fibonacci number is defined by following recursive equations

f(1) = 1; f(2) = 2; f(n) = f(n-1) + f(n-2)

Write a function file to calculate and write out the nth Fibonacci number for n > 2 where n is input to the user and output is the Fibonacci number. Use a while loop to perform the calculation. Test your program by calculating f (10).

3C. Write a function that accepts a character string and return a logical array with true values corresponding to each vowel and false value everywhere else. Be sure the function works properly for both lower and upper case characters.

Eg. 'MAtLab' = [0 1 0 0 1 0]

- 4A. A vector x is given by x = [1:50]. Write a program using Logical indexing to find the even and prime number in x and also its sum. (03)
- 4B. Write a function that can synthesize a waveform in the form

$$x(t) = \operatorname{Re} al \left\{ \sum_{k=1}^{N} X_{k} e^{j2\pi k f_{o}t} \right\} \quad \text{Where } f_{o} \text{ is the fundamental frequency.}$$

For $f_o = 25$ Hz, $X_k = j4/k\pi$ for k odd and 0 for k even, plot x(t) for N=5,10 and 25. Explain what happens when $N \rightarrow \infty$. $t = [0:0.001:4/f_o]$

4C. Write a program to find the derivative of function $f(x) = \frac{3x^2 - 2x + 4}{x^2 + 5}$. Subplot f(x) and f'(x) in the domain $-2 \le x \le 2$. (03)

(04)

(03)

(03)

(04)

- 5A. Write a user defined function that fits data points to a power function of the form $y = bx^m$.Name the function [b, m] = powerfit(x, y), where the input arguments x and y are vectors with the coordinates of the data points, and the output argument b and are the constants of the fitted power equation.
 - I. Make a plot that shows the data points and the function
 - II. Make a plot that shows the data points with circle markers and spline interpolation with a solid line.

Х	0.5	1.9	3.3	4.7	6.1	7.5	
Y	0.8	10.1	25.7	59.2	105	122	(03)

5B. A deflection in a crystal lattice where a raw of atoms is missing is called an edge dislocation. The stress field around an edge dislocation is given by:

$$\sigma_{xx} = \frac{-Gb}{2\pi(1-\nu)} \frac{y(3x^2+y^2)}{(x^2+y^2)^2}; \qquad \sigma_{yy} = \frac{Gb}{2\pi(1-\nu)} \frac{y(x^2-y^2)}{(x^2+y^2)^2};$$
$$\sigma_{xy} = \frac{Gb}{2\pi(1-\nu)} \frac{x(x^2-y^2)}{(x^2+y^2)^2}$$

Where G is the shear modulus, b is the Burgers vector, and v is Poisson's ratio. Plot stress components (each in a separate figure) due to an edge dislocation in aluminium for which G = 27.7 x 10⁹ Pa, b = 0.286 x 10⁻⁹ m, and v = 0.334. Plot the stress in the domain -5 x 10⁻⁹ \leq x \leq 5 x 10⁻⁹ m and -5 x 10⁻⁹ \leq y \leq 5 x 10⁻⁹ m. Plot the coordinates x and y in the horizontal plane, and stresses in the vertical direction. (only write the code)

5C. An RLC series circuit with $R = 1\Omega$, L = 1H, & C = 10mF is connected to a dc source of 10V through a switch. Using Simulink plot the inductor current and the capacitor voltage for time, $0 \le t \le 10s$, if the switch is closed at t = 1s & the circuit elements are initially relaxed. Draw the block diagram and the results.

$$V - i(t)R - L\frac{di(t)}{dt} - V_c(t) = 0$$
$$V_c(t) = \frac{1}{c} \int i(t)dt$$
(04)

(03)