Reg. No.									
----------	--	--	--	--	--	--	--	--	--

MANIPAL INSTITUTE OF TECHNOLOGY Manipal University

FOURTH SEMESTER B.Tech. (E & C) DEGREE END SEMESTER EXAMINATION MAY/JUNE 2016 SUBJECT: Digital System Design & HDL (ECE - 206)

J	FIME: 3 HOURSMAX. MARKS: 50
Ins	tructions to candidates
	 Answer ANY FIVE full questions. Missing data may be quitably assumed.
	• Missing data may be suitably assumed.
1A.	Write a structural VHDL code for a four bit carry ripple adder.
1 B .	Explain the signature analysis technique with an example.
1C.	Explain the SRAM programming technology with diagram.
	(5+3+2)
2A.	Write a structural VHDL code for a 3 bit ripple up counter using T flip-flops.
2B.	Implement full adder using ACT-3 C Module. Show the relevant design steps.
2C.	If A = 111, B = 011 and C = 010, what are the values of the following statement? (a) (A & B) or (B & C)
	(D) A & B (5+3+2)
3A.	Find test vector for the circuit shown in FIG. 3A using i) D algorithm ii) PODEM
3B.	Implement synchronous 3 bit down counter using PAL with 2 wide OR array plane and D flipflop.
3C.	Find the reduced fault set for a two input OR gate.
	(5+3+2)
4A.	Find the test vector for the circuit shown in FIG. 4A sing ITG method.
4B.	Write a behavioural VHDL code for an 8-to-1 MUX with active-low output and active-high enable input.
4C.	Draw diagram for ACTEL ACT 2 C Module.
	(5+3+2)
5A.	Write a behavioural VHDL code for 1010 overlapping sequence detector.
5B.	Write a structural VHDL code for a full adder using basic gates.
5C.	Explain any two Ad-hoc DFT techniques with examples.
	(5+3+2)
6A.	Implement BCD to Excess -3 code converter using Xilinx XC3000 FPGA. How many CLBs and LUTs
F	Page 1 of 2

required? Show the contents in the SRAM cell?

- 6B. Find the test vector for the fault shown in FIG. 6B using Boolean difference method.
- 6C. Write a behavioural VHDL code for a 2-to-4 decoder with active high *enable* input.

(5+3+2)

FIG. 4A

