Dog No					
Reg. No.					

MANIPAL INSTITUTE OF TECHNOLOGY Manipal University

FOURTH SEMESTER B. TECH (E & C) DEGREE END SEMESTER EXAMINATION MAY/JUNE 2016 SUBJECT: ELECTROMAGNETIC WAVES (ECE - 208)

TIME: 3 HOURS

Instructions to candidates

MAX. MARKS: 50

- Answer **ANY FIVE** full questions.
 - Missing data may be suitably assumed.
- 1A. Define Electric field intensity **E**. Derive expression for **E** at any point in free space due to an infinite line charge $\rho_L C/m$ placed along z-axis.
- 1B. Obtain the equivalent of vector $\mathbf{F} = 4\mathbf{a}_x 2\mathbf{a}_y 4\mathbf{a}_z$ in cylindrical coordinate at point A($\rho = 5$, $\phi = 59^{\circ}$, z = 5).
- 1C. Define electric flux density and state Gauss law.

(5+3+2)

2A. Define Gauss Divergence theorem and verify this theorem by evaluating both sides of the equation for the following case.

D = 6 $\rho \sin(\varphi/2)$ **a**_{ρ} + 1.5 $\rho \cos(\varphi/2)$ **a**_{φ} C/m² ; 1 ≤ ρ ≤ 2, 0 ≤ φ ≤ $\pi/2$, 0 ≤ z ≤ 5.

- 2B. Derive expressions for the potential and electric field due to electric dipole at a point radial distant r from the dipole.
- 2C. Write the electric field boundary conditions for dielectric dielectric interface.

(5+3+2)

- 3A. Two identical conducting planes of area *S* are separated by small distance *d* and placed in a dielectric medium of permittivity ε . A potential difference V_o volt exists between the plates. Using Laplace equation, obtain an expression for the capacitance.
- 3B. What is relaxation time? Obtain an expression for the same.
- 3C. If a potential field $V = (60/r^2)\sin(\theta)$ volt exists in free space, then the electric field at P(3m,60°,25°) will be -----

(5+3+2)

- 4A. A circular loop of radius a carries current I in anti-clockwise direction. Derive an expression for the magnetic field intensity at appoint along the axis of the loop distant d from the centre.
- 4B. A solid circular conductor of radius a carries current *I*. Use Ampere law to obtain the distribution of magnetic field intensity inside and outside the conductor.
- 4C. Define scalar and vector magnetic potentials.

(5+3+2)

5A. Derive an expression for torque on a current carrying loop of area S immersed in an uniform magnetic field **B**.

- 5B. A conducting wire along x-axis carries a current 20A in \mathbf{a}_x direction. It is in a magnetic field $\mathbf{B} = 10$ $\mathbf{a}_x + 5 \mathbf{a}_y$ Wb/m². Determine force per meter length of the wire.
- 5C. Write either in integral or in point-form Maxwell equations for free space.

(5+3+2)

- 6A. Derive expressions for reflection coefficient Γ and transmission coefficient Γ for a plane wave travelling from one dielectric medium to other with normal incidence at the interface.
- 6B. A plane wave at 9.375 GHz propagates in a loss less dielectric medium with $\varepsilon_r = 2.26$. If $E_{x0} = 500$ V/m, determine propagation constant and H_{y0} .
- 6C. State Poynting vector theorem.

(5+3+2)