

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

IV SEMESTER B.TECH (ELECTRONICS AND COMMUNICATION ENGINEERING)

END SEMESTER EXAMINATIONS, JUNE/JULY 2016

SUBJECT: ENGINEERING MATHEMATICS IV [MAT 2207]

REVISED CREDIT SYSTEM (MAKEUP)

Time: 3 Hours

MAX. MARKS: 50

•

Instructions to Candidates: Answer all the questions.

1A.	Solve the difference equation using Z- transform $y_{n+2} + 6y_{n+1} + 9y_n = 2^n$, $y_0 = y_1 = 0$.						
1B.	Solve $y'' + (1 + x)y' - y = 0$, $y(0) = y'(0)$, $y(1) + y'(1) = 1$ with $h = 0.5$.	3					
1C.	Three plants C_1 , C_2 and C_3 produce respectively 10, 50 and 40 percent of a company's output. Although plant C_1 is a small plant, its manager believes in high quality and only 1% of its products are defective. The other two, <i>viz.</i> , C_2 and C_3 are worse and produce items that are 3% and 4% defective respectively. All products are sent to a central warehouse. One item is selected at random. Find the probability that it is defective. Also, determine the probability that the selected defective item is the one manufacture by plant C_1 .	4					
2A.	Solve the difference equation $y_{n+2} + y_{n+1} + y_n = n^2 + n + 1$.						
2B.	Suppose that the joint p.d.f of two dimensional random variable (X, Y) is given by $f(x, y) = \begin{cases} x^2 + \frac{xy}{3}, & 0 < x < 1, & 0 < y < 2 \\ 0, & \text{elsewhere} \end{cases}$ Compute (a) Marginal pdfs of X and Y (b) P(X + Y < 1) (c) P(Y < X).	3					
2C.	Solve the Poisson equation $u_{xx} + u_{yy} = -81xy$, $0 < x < 1$, $0 < y < 1$, given that	4					

	u(0,y) =	0, u(x,0)	= 0, u(1	,y) = 100), u(x,1)	=100 and	d h=1/3.				
	A random variable X has the following probability function.										
3A.	X	0	1	2	3	4	5	6	7		
	P(x)	0	k	2k	2k	3k	k ²	2 k ²	7 k ² +k	-	3
	Find i) k ii) $P[X \ge 6]$ iii) $P[0 < X < 5]$ iv) If $P[X \le x] > 1/2$, find the										
	minimum value of x.										
3B.	A five digit number is formed using the digits 0, 1, 2, 3, 4 without repetition. Find the										3
	probability that the number formed is divisible by 4.										5
3C.	Fit a $Y=a+bX+cX^2$ for the following data										
	X	1	2	3	4	6	8				4
	Y	2.4	3	3.6	4	5	6	-			
4A.	If X, Y, and Z are uncorrelated random variables with standard deviations 5, 12, and										
	9 respectively and if U=X+Y and V=Y+Z, evaluate the correlation coefficient										3
	between U and V.										
4B.	In a normal distribution, 31% of the items are under 45 and 8% are over 64. Find the									3	
	mean and the standard deviation.										
	The number of telephone lines busy at an instant of time is a binomial variate with										_
4C.	probability 0.2. If at an instant of 10 lines are chosen at random, what is the										4
	probability that i) 5 lines are busy? ii) at most 2 lines are busy?										
	i)If $M_{X_1}(t) = (1 - 2t)^{-3}$, $M_{X_2}(t) = (1 - 2t)^{-2}$ and $M_{X_3}(t) = (1 - 2t)^{-1/2}$ then										
5A.	find the mgf of $Z = X_1+X_2+X_3$ (where X_1, X_2 and X_3 are independent). Hence										3
	obtain the pdf of Z. ii) Obtain mgf of Gamma distribution.										
5B.	If \overline{X} is the mean of a random sample size n from a normal distribution with mean μ										
	and variance 100, find n so that $P{\mu - 5 < \overline{X} < \mu + 5}=0.954$.										3
5C.	Two independent random variables X and Y is normally distributed with $\mu = 0$ and										
	σ^2 , then find pdf of R= $\sqrt{X^2 + Y^2}$.									4	