

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

IV SEMESTER B.TECH (INDUSTRIAL & PRODUCTION ENGINEERING) MAKEUP EXAMINATIONS, JUNE 2016

SUBJECT: ENGINEERING MATHEMATICS IV (MAT 2209) REVISED CREDIT SYSTEM

Time: 3 Hours MAX. MARKS: 50

Instructions to Candidates

❖ Answer **ALL** the questions. All questions carry equal marks

1A.	Fit a second degree parabola to the following data:	
	x: 1 2 3 4 5	•
	x: 1 2 3 4 5 y: 10 12 13 16 19	3
1B.	Ten persons in a room are wearing badges numbered 1 through 10. Three	
	persons are selected at random and are asked to leave the room	•
	simultaneously. Their badge numbers are noted. What is the probability	3
	that the (i) smallest badge number is 5 (ii) largest badge number is 5?	
1C.	Find the correlation coefficient and the regression lines of y on x and x	
10.	on y for the following data.	
		4
	x 20 25 30 35 40	-
	y 16 10 8 20 5	
2A.	Two independent random variables X ₁ and X ₂ have means 5, 10 and	
	variance 4, 9. Find the covariance between	3
	$U = 3X_1 + 4X_2$ and $V = 3X_1 - X_2$.	
2B.	A continuous random variable has the pdf	
	$(kx^3, 0 < x < 1)$	
	$f(x) = \begin{cases} kx^3, & 0 < x < 1 \\ 0, & \text{elsewhere} \end{cases}$	3
	Find (i) the constant k (ii) $Pr\{\frac{1}{4} < X < \frac{3}{4}\}$ (iii) $Pr\{X < \frac{1}{2}\}$.	

MAT 2209 Page 1 of 2

Reg. No.					
· ·					

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

RED BY	LIFE	OIE.	
2C.	The joint pdf of a two dimensional random variable is given by		
	$f(x, y) = x^2 + \frac{xy}{3}, 0 < x < 1, 0 < y < 2$		
		4	
	= 0, elsewhere		
	Compute (i) $P\{X + Y \ge 1\}$ (ii) $P\{Y < 1/2 X < 1/2\}$.		
3A.	In a bolt factory there are three machines A, B, C manufacturing		
	respectively 40%, 25%, 35% of the total production. Of these 5%, 3% &		
	2 % are defective. If a bolt is drawn at random was found to be defective,	3	
	what is the probability that it was manufactured by A?		
3B.	Suppose that X has Poisson distribution. If $Pr\{X=2\} = \frac{2}{3}Pr\{X=1\}$.		
	Evaluate (i) $Pr\{X=0\}$, (ii) $Pr\{X=3\}$.	3	
	Evaluate (1) $\Gamma \{ A = 0 \}$, (11) $\Gamma \{ A = 3 \}$.		
3C.	If $X \sim N(\mu, \sigma^2)$ show that $W = \left(\frac{X - \mu}{\sigma}\right)^2$ has $\chi^2(1)$.	4	
4A.	Find the mean and variance of Chi-square distribution.	3	
4B.	If X and Y are independent and have standardized normal distribution,		
	show that $Z = \frac{X}{Y}$ has Cauchy's distribution.	3	
4C.	In a normal distribution, 7% of the items are under 35 and 89% are under	A	
	63. Find the mean and variance of the distribution.	4	
5A.	Find the mgf of a random variable which is uniformly distributed over	•	
	$(-a, a)$. Hence evaluate $E(X^{2n})$.	3	
5B.	Suppose that a continuous random variable X has the pdf $f(x) = e^{-x}$, $x \ge 0$.	•	
	Find the pdf of $Y = X^3$.	3	
5C.	A random sample of size 64 is taken from an infinite population having		
	mean 112 and variance 144. Using central limit theorem, find the	4	
	probability of getting $\bar{x} > 114.5$		

MAT 2209 Page 2 of 2