Reg. No.										
----------	--	--	--	--	--	--	--	--	--	--

(A Constituent Institute of Manipal University)

IV SEMESTER B.TECH (MECHANICAL ENGINEERING) END SEMESTER EXAMINATIONS, MAY 2016

SUBJECT: ENGINEERING MATHEMATICS IV [MAT 2210]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitably assumed.

1A.	The p.d.f. of a continuous random variable X is given by $f(x) = \begin{cases} 6x(1-x) \text{ for } 0 \le x \le 1 \\ 0 & \text{elsewhere} \end{cases}$ then (i) find the c.d.f. of X. (ii) find $E(X)$ and $V(X)$.								
1B.	In a game A and B throw a pair of dice alternatively. A wins if he throws a sum 6 before B throws a sum 7 and B wins if he throws a sum 7 before A throws a sum 6. If A begins then find his chance of winning.								
1C.	Three urns contain 6 red, 4 black; 4 red, 6 black and 5 red, 5 black balls respectively. One of the urns is selected at random and a ball is drawn from it. If the ball drawn is red, find the probability that it is drawn from the first urn?								
2A.	Fit a parabola $y=a+bx+cx^2$ to the following data $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4							
2B.	Find the moment generating function (m.g.f.) of a Poisson distribution and hence find its mean and variance.								
2C.	A two dimensional continuous random variable (X, Y) has the joint p.d.f. $f(x, y) = \begin{cases} kxy & ; \ 0 < x < 4, 1 < y < 5 \\ 0 & ; \ elsewhere \end{cases}$ Then find k and $E(XY)$.								

3A.	The marks of a set of students for a certain subject are normally distributed with mean 62 and standard deviation 3. If 4 students are chosen randomly from this set then what is the probability that 3 of them have less than 60% marks.	4		
3B.	In a large number of parts manufactured by a machine, the mean number of defectives in a sample of 20 is 2. Using binomial distribution, how many would be expected to contain at least 3 defective parts out of 1000 such samples.			
3C.	Let <i>X</i> be random variable which is uniformly distributed over $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$. Then find the p.d.f. of <i>Y</i> = tan <i>X</i> .	3		
4A.	If X_1 and X_2 are two independent random variables which follows standard normal distribution then find the p.d.f. of $Y = \frac{X_1}{X_2}$.	4		
4B.	Let μ and σ^2 be the mean and variance of a continuous random variable <i>X</i> with p.d.f. $f(x)$ then prove that $P(\mu - k\sigma < X < \mu + k\sigma) \ge 1 - \frac{1}{k^2}$ for any $k > 0$.	3		
4C.	Express $f(x) = 2x^3 - x^2 - 3x + 2$ in terms of Legendre polynomials.	3		
5A.	Prove that $(i) \frac{d}{dx} [x^n J_n(x)] = x^n J_{n-1}(x) (ii) x J_n^{-1}(x) = x J_{n-1}(x) - n J_n(x)$	4		
5B.	Obtain the power series solution of the equation $\frac{d^2y}{dx^2} - y = 0$	3		
5C.	Let \overline{X} be the mean of a random sample of size 15 from a distribution having p.d.f. $f(x) = \begin{cases} 3x^2 & \text{for } 0 < x < 1\\ 0 & \text{elsewhere} \end{cases}$. Then by using central limit theorem find $P\left(\frac{3}{5} < \overline{X} < \frac{4}{5}\right)$.	3		