

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

IV SEMESTER B.TECH (PRINTING & MEDIA ENGINEERING) END SEMESTER EXAMINATIONS, MAY 2016

SUBJECT: ENGINEERING MATHEMATICS IV [MAT 2212]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitable assumed.

1A.	Solve $xy'' + y = 0$; $y(1) = 1$, $y(2) = 2$ with $h = 0.25$ using finite difference method						4marks	
1B.	Out of 800 families with 4 children each, how many families would be expected to have i) 2boys and 2 girls ii) at most 2 girls iii) at least one boy. Assume equal probabilities for boys and girls.							3marks
1C.	Two cards are drawn at random from a box which contains five cards numbered 1,1, 2,2 and 3.Let X denote the sum and Y, the maximum of the two numbers drawn. Find the joint distribution of X and Y.							3marks
2A.	Solve the LPP graphically. Maximize $Z = 5x_1 + 3x_2$ subject to $4x_1 + 5x_2 \le 1000$, $5x_1 + 2x_2 \le 1000$, $3x_1 + 8x_2 \le 1200$, $x_1 \ge 0$, $x_2 \ge 0$.							
2B.	If the random variable 'K' is uniformly distributed over [0, 7], what is the probability that the roots of the equation $4x^2 + 4xK + K + 2 = 0$ are real ?							3marks
2C.	X=x P(X=x) Find 'a' and	0 1/8 'b'if I	$\frac{1}{a}$ $P(X^2 = 4X)$	3 1/6 - 3) = $\frac{1}{2}$	7	13 b	The given is pmf of X.	3marks
3A.	Solve by Crank Nicolson's method $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, \ 0 < x < 5, \ t > 0 \ , u(x, 0) = 20, \ u(0, t) = 0, \ u(5, t) = 100. $ Take							4marks

Reg. No.										
----------	--	--	--	--	--	--	--	--	--	--

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

INSPIRED BY LIFE

PIRED BY	LIFE	TUTE OF							
	h=1, compute u for one time step.								
3B.	The random variable (X , Y) has a joint pdf given by $f(x , y) = x + y, 0 \le x \le 1$ $0 \le y \le 1$. Compute the correlation coefficient between x and y.								
3C.	In a normal distribution 13% of the items are under 45 and 42% over 64. Find the mean and standard deviation.								
4A.	Find the mean and Variance of exponential distribution.								
4B.	Solve $u_{xx} + u_{yy} = 0$ using five point formula. Given $h = \frac{1}{3}$, $0 < x < 1$, $0 < y < 1$, $u(x, 1) = u(0, y) = 0$, $u(1, y) = 9(y - y^2)$ $u(x, 0) = 9(x - x^2)$.								
4C.	A two dimensional random variable (X,Y) has the joint density function $f(x, y) = 6e^{-2x-3y}$, x, $y \ge 0$. Find the Marginal and conditional pdf's of X and Y.								
5A.	Use simplex method to solve, Maximize $z = 3x + 5y$ subject to $3x+2y \le 18$ $x \le 4$, $y \le 6$, $x \ge 0$, $y \ge 0$								
5B.	The chances that a Doctor A will diagnose a disease X correctly is 60%. The chance that a patient will die by his treatment after correct diagnosis is 40% and the chances of the death by wrong diagnosis is 70%. A patient of a doctor A who had disease X died. What is the chance that his disease was diagnosed correctly?								
5C.	A random variable X has the following probability distribution .x01234567p(x)0K2K2K3KK ² 2K ² 7K ² + KFind a) the value of 'K ' b) $P(3 < X \le 6)$ c) $P(X \ge 5)$	3marks							