Regd. No.									
-----------	--	--	--	--	--	--	--	--	--

MANIPAL UNIVERSITY

DEPARTMENT OF SCIENCES

SECOND SEMESTER M. Sc. (CHEMISTRY) END SEMESTER EXAMINATIONS

ORGANIC SPECTROSCOPY-II (CHM - 608)

Time: 3 Hours

Date:

Max. Marks: 50

Note: Answer any five full questions. Write diagrams, equations or examples wherever necessary.

- **1.** A. Discuss about any two alternatives for magnetic/electrostatic focusing. Write two advantages of FTMS method.
 - B. Explain the factors affecting chemical shift.
 - C. Justify the following statements;
 (i) Isotopic substitution method could be used to study the reaction mechanism involved in hydrolysis of ester using mass spectrometry.
 (ii) TMS is used as a reference in NMR spectroscopy

(4 + 4 + 2)

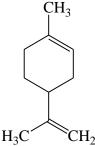
- 2. A. Explain the energy levels and transition frequencies for excitation ($I_e = 3/2$) of a Mossbauer nucleus from ground level of spin, $I_g = \frac{1}{2}$ due to magnetic hyperfine interactions.
 - **B.** What are the basic components of ESR spectrometer? Explain the working of ESR spectrometer with a schematic diagram.
 - **C.** Differentiate between ¹H NMR and ¹³C NMR spectroscopic techniques

(4 + 4 + 2)

- **3.** A. Discuss the basic fragmentation and rules by taking the example of alkanes, alkenes, cycloalkenes and alkyl benzenes.
 - B. (i) Deduce the structure of the organic compounds having the following molecular formula and ¹H NMR spectral data
 (a) C₄H₈O₂

0				
	Chemical Shift (ppm)	Peak area	Splitting	
	3.674	3	Singlet	
	2.324	2	Quartet	
	1.148	3	triplet	

(b) CH₃NO


Chemical Shift (ppm)	Peak area	Splitting		
8.04	1	Doublet		
7.39	2.13	doublet		

(ii) Explain the instrumentation involved in NMR spectrometer

- C. Differentiate between the following
 - (i) Continuous wave NMR and FTNMR
 - (ii) Hard and soft ionization techniques

(4 + 4 + 2)

- 4. A. Describe the energy levels, expected ESR spectrum, intensities of spectral lines and the frequencies of absorption of an unpaired electron coupling with two non-equivalent nuclei, each of spin, $I = \frac{1}{2}$.
 - **B.** (i) Discuss the expected 13 C DEPT spectra of the following molecule

(ii) Write a short note on ¹⁹F and ³¹P NMR spectroscopic techniques.

C. The compound BCl₃ has C₃ axis. The NQR study of this compound yields $q_{zz} = 2 \times 10^{25}$. Calculate the NQR frequency. Given: $e = 4.8 \times 10^{-10}$ esu, $q = -0.08 \times 10^{-24}$ cm².

(4+4+2)

- **5.** A. Explain the principle involved in GC-MS technique. How its interface is different from the interface involved in HPLC- MS technique.
 - B. (i) Illustrate the effect of deuterium exchange on NMR spectrum
 - (ii) How do you distinguish the following pairs using proton NMR spectra?(a) propanal and propanone(b) 1-butyne and 2-butyne
 - C. (i) An unknown substance has a molecular ion peak at m/z = 107, with a relative intensity of 100. The relative intensity of the M + 1 peak is 8.00, and the relative intensity of the M + 2 peak is 0.30. What is the molecular formula for this unknown?
 - (ii) An unknown substance shows a molecular ion peak at m/z = 78. The M and M+2 peak had a relative intensity of 3:1. What is the molecular formula of the unknown?

(4 + 4 + 2)

- **6. A.** Predict the ¹³C chemical shift values for the following molecules
 - (i) n-octane
 - (ii) 2-Methylpentane (correction for branching $1^{\circ}(3^{\circ}) = -1.1$, $2^{\circ}(3^{\circ}) = -2.5$, $3^{\circ}(2^{\circ}) = -3.7$)
 - (iii) 3-hexanol (correction for internal OH substitution: α carbon = +41, β carbon = +8, γ carbon = -5)
 - (iv) 1-chlorobutane (correction for terminal Cl substitution: α carbon = +31, β carbon = +11, γ carbon = -4)
 - **B.** The spin of ⁵⁹Co is 7/2. Assume an axial field gradient, obtain expressions for frequencies of the NQR transitions.
 - **C.** Explain, why FeSO₄ shows quadrupole splitting whereas K₄Fe(CN)₆ does not show in Mossbauer spectroscopy?

(4 + 4 + 2)
