Regd. No.									
-----------	--	--	--	--	--	--	--	--	--

MANIPAL UNIVERSITY DEPARTMENT OF SCIENCES

SECOND SEMESTER M. Sc. (CHEMISTRY) END SEMESTER EXAMINATIONS

ORGANIC SPECTROSCOPY-II (CHM - 608)

Time: 3 Hours

Date: 11th May 2016

Max. Marks: 50

Note: Answer any five full questions. Write diagrams, equations or examples wherever necessary.

- 1. A. A Mossbauer nucleus having an axially symmetric electric field tensor gets excited from a ground state with spin $I_g = 3/2$ to the excited state with spin $I_e = 5/2$. Obtain the energy level schemes and expressions for quadrupole splittings.
 - B. (i) A free electron gives a resonance at a frequency of 9.5 GHz in a magnetic field of 0.34 T. At what frequency, the resonance occurs if the magnetic field is 1.3 T?
 (ii) Explain the principle of ESR spectroscopy.
 - **C.** The NQR frequencies v_+ and v_- for a nitrogen containing compound in the solid state are 20 and 18 kHz respectively. Find η and the quadrupole coupling constant $(e^2 qQ)$ in frequency unit.

(4 + 4 + 2)

- 2. A. (i) Draw the possible molecular structures for compounds which meet the following ¹H NMR
 - (a) Molecular formula, C₈H₈O₂

Chemical Shift (ppm)	Peak area	Splitting
7.78	0.19	Doublet of doublets
7.22	0.10	triplet
7.11	0.19	Triplet
3.58	0.30	Singlet

(b) Molecular formula, C₅H₁₂O

Chemical Shift (ppm)	Peak area	Splitting
2.4	1	Singlet
1.4	2.03	quartet
1.1	5.98	Singlet
0.8	3.01	triplet

(ii) How do you distinguish the following pairs by ¹H NMR spectra?
(a) 1-bromopropane and 2-bromopropane

(b) ethyl acetate (MeCO₂Et) and methyl propanoate (EtCO₂Me)

B. Discuss the following;

(i) Quadrupole MS (ii) Factors affecting the coupling constant

- **C.** Justify the statements:
 - (i) Abundant molecular ions were found in the mass spectrum of aniline but not in 2-methyl 2-propylamine.
 - (ii) Inductive effect shifts the normal position of a proton signal in NMR.

(4 + 4 + 2)

- **3. A.** Discuss the various types of interactions that contribute to the total Hamiltonian of an electron in a system.
 - **B.** (i) Explain the influence of electronegative moieties on ¹³C chemical shift values with an example.
 - (ii) Explain the ¹³C chemical shift values of carbons with different hybridizations.
 - C. How is the Mossbauer spectroscopy useful in surface studies?

(4+4+2)

- **4. A.** What is a non-first order spectrum? Give examples. Explain any two methods to simplify complex proton NMR spectra.
 - **B.** Describe the processes and instrumentation involved in the following techniques used in mass spectrometry: a) chemical ionization; b) field desorption c) fast atom bombardment d) thermospray.

5. A. Predict the ¹³C chemical shift values for the following molecules:

- (i) n-nonane
- (ii) 2-hexamine (correction for internal NH₂ substitution: α carbon = +24, β carbon = +10, γ carbon = -5)
- (iii) Nitrobenzene (correction for substituent NO₂: $C_1 = +19.6$, $C_2 = -5.3$, $C_3 = +0.9$, $C_4 = +6.0$)

- (iv) 1-fluoro-2-nitrobenzene (correction for substituent NO₂: $C_1 = +19.6$, $C_2 = -5.3$, $C_3 = +0.9$, $C_4 = +6.0$) (correction for substituent F: $C_1 = +35.1$, $C_2 = -14.3$, $C_3 = +0.9$, $C_4 = -4.5$)
- **B.** Explain the principle of NQR spectroscopy. Why NQR cannot be used for liquid or gaseous samples? How is NQR used for studying the nature of chemical bond?
- C. A Mossbauer nucleus, ⁵⁷Fe make a transition from the excited state of energy 14.4 kev to the ground state. Calculate its recoil momentum and recoil velocities. Given: $1 \text{ev} = 1.6 \times 10^{-19} \text{J}$.

(4 + 4 + 2)

- 6. A. What is Zeeman effect? Write the requirements for a nucleus to show NMR signal. Show that the ffrequency of absorbed/emitted by a nucleus in moving from one energy level to another is directly proportional to the applied magnetic field.
 - **B.** Explain the principle and instrumentation involved in continuous wave NMR spectrometer
 - C. Differentiate between the following
 (i) Chemical and magnetic equivalence
 (ii) Electron impact ionization and electrospray ionization

(4 + 4 + 2)
