

MANIPAL UNIVERSITY, MANIPAL

SECOND SEMESTER M.Sc. (Physics) END SEMESTER EXAMINATION (Makeup)-2016 Numerical Methods and Computational Physics (PHY – 604) (CREDIT SYSTEM)

Time: 3 Hrs.

Max. Marks: 50

NOTE: (a) Answer any FIVE full questions. (b) All questions carry equal marks.

- (a) Monthly (30 days) temperature data of three cities are stored in three separate files: city1.dat, city2.dat and city3.dat. Write a C program to read temperature data from these files; find maximum, minimum, average and standard deviation of temperatures and append the results in corresponding files.
 - (b) Write a C program to implement Lagrange's interpolation formula on a given set of data entered by the user
- (a) From successive approximation method, inverse interpolate the set of data given below to find x(10) accurate upto 4 decimal points. Given: (2, 6), (3, 25), (4, 62), (5, 123)
 - (b) Write a C program to obtain solution of a system of four linear simultaneous equations by Gauss Jordan method.
- 3. (a) Construct a least square quadratic approximation to the function y(x) = sin(x) in the interval $[0, \pi/2]$ with respect to weight function W(x) = 1
 - (b) Write a C program to find the transpose and trace of a 3X3 matrix entered by the user.
- 4. (a) Using Simpson's 1/3 rule, evaluate $V = \int_0^1 \pi y^2 dx$ for the following set of data: (0, 1), (0.25, 0.9896), (0.5 0.9589), (0.75, 0.9089), (1, 0.8415)
 - (b) Obtain finite difference approximations for y'(x) and y''(x) from Taylor series. Solve the boundary value problem y'' y = 0 with boundary conditions y(0) = 0 and y(2) = 3.62686 (Take a step-size of 0.5)
- 5. (a) Solve the equation $\partial^2 u/\partial x^2 = -\partial^2 u/\partial y^2$ for the data given below

ΔĨ	<u> </u>		00]	100 5	i A
		u7	u8	u9	
u = 0		u4	u5	и6	u = 0
7		ul	u2	u3	
V		u	= 0		Λ.

- (b) Explain Monte-Carlo crude integration technique. Write a C program to implement it.
- 6. (a) Write a recursive C program to find GCD and LCM of two numbers entered by the user.
 - (b) Write a C program to implement II order Runge-Kutta method to solve a differential equation (Differential equation may be suitably assumed)