Reg. No.

Manipal University, Manipal Second Semester M.Sc.(Physics) End Semester Examination, May 2016

Subject: Quantum Mechanics II (PHY-606)

(Credit System)

Time: 3 hours

Marks: 50

Make Up

Answer any five full questions.

 (i) If the eigenvalues of J² and J_z are given by J²|λ, m >= λ|λ, m > and $J_z|\lambda, m>=m|\lambda, m>$. For the simultaneous eigenvector of J^2 and J_z , $|\lambda, m >$ show $\lambda \ge m^2$. Take $\hbar = 1$.

(ii) Show that $\vec{L} \times \vec{L} = i\vec{L}$.

(iii) Determine the orbital momenta of two electrons in the configuration p^1d^1 . 3

2. (i) Calculate the energy correction due to spin-orbit coupling for hydrogen atom.

(ii) Given the matrix for H^0 and H' as $\begin{pmatrix} E_0 & 0 \\ 0 & E_0 \end{pmatrix} \begin{pmatrix} 0 & -A \\ -A & 0 \end{pmatrix}$ in the orthonormal basis $|1\rangle$ and $|2\rangle$, determine the

(a) energy eigenvalues and (b) energy eigenfunctions.

3 3. (i) Using WKB method calculate the expressions of wavefunc-4 tions in classical region.

(ii) Write the Hamiltonian for a Helium atom. [2]

(iii) Estimate the ground state energy for a Helium atom using the variational method with the trial wavefunction

$$\psi_{tr} = \frac{8}{\pi a^3} exp \left(-\frac{2(r_1 + r_2)}{a}\right) \qquad [4]$$

4. (i) Obtain expression of transition probability for a time dependent harmonic perturbation. 5

(ii) Calculate the Einstein B coefficient for the n=2, l=1, m=0, → n=1, l=0, m=0 transition in the hydrogen atom.

5. (i) Discuss the phase shift technique used to study the quantum 5 scattering process.

(ii) In a scattering experiment, the potential is spherically symmetric and the particles are scattered at such energy that only s and p waves need to be considered.

(a) Show that the differential cross-section $\sigma(\theta)$ can be written in the form $\sigma(\theta) = a + b\cos\theta + \cos^2\theta$. [2]

(b) What are the values of a, b, and c in terms of phase shifts? [3] 6. (i) Using the Klein-Gordon equation show that the expressions for relativistic and non-relativistic position probability densities are different. [3]

(ii) Obtain different anticommutation relations with the help of Dirac Hamiltonian. [3]

(iii) Prove that the operator $c\vec{\alpha}$, where $\vec{\alpha}$ stands for Dirac matrices, can be interpreted as the velocity operator. [4]

Useful formulae:

$$\nabla^2 t = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial t}{\partial r} \right) + \frac{1}{r^2 sin\theta} \frac{\partial}{\partial \theta} \left(sin\theta \frac{\partial t}{\partial \theta} \right) + \frac{1}{r^2 sin^2 \theta} \frac{\partial^2 t}{\partial \phi^2}$$

$$\psi_{210} = \left(\frac{1}{32\pi a^3} \right)^{\frac{1}{2}} \frac{r}{a} exp \left(-\frac{r}{2a} \right) cos\theta$$

$$\psi_{100} = \left(\frac{1}{\pi a^3} \right)^{\frac{1}{2}} exp \left(-\frac{r}{a} \right)$$

$$\int_0^\infty x^n exp(-ax) \, dx = \frac{n!}{a^{n+1}}, \quad n \ge 0, a > 0$$