

Note: (a) Answer any FIVE full questions.

MANIPAL UNIVERSITY, MANIPAL

Fourth SEMESTER M.SC (Physics) END SEMESTER EXAMINATION, MAY. 2016

SUB: CONDENSED MATTER PHYSICS II (PHY 706.2) (REVISED CREDIT SYSTEM)

Time: 3 Hrs. Max. Marks: 50

1 (a) Discuss the Shockley-Read –Hall theory of recombination and obtain an expression for recombination

- rate. Discuss when a trap will act as a recombination center, electron trap and hole trap. [6] (b)(i)For an n-type semiconductor at room temperature, the concentration varies linearly from 1×10^{18} cm⁻³ to 7×10^{17} cm⁻³ over a distance of 0.10cm. Calculate the diffusion current density if the electron diffusion coefficient is 225cm²/s.
 - (ii)Excess electrons and holes are generated at the end of a n type silicon bar(x=0). The minority carrier lifetime is $1\mu s$, the hole diffusion coefficient is $10cm^2/s$ and if $\delta n(0)=10^{15}\,cm^{-3}$. Determine the steady state hole concentrations in the silicon for x>0.
- 2 (a) Derive the ideal I-V relationship for a p-n juntion diode. [6] (b) A silicon abrupt junction in thermal equilibrium at 300K is doped such that E_C - E_F =0.21ev in the n region and E_F - E_V =0.18ev in the p region. Determine impurity doping concentrations in each region and find built in potential difference. Given N_c =2.8×10¹⁹ cm⁻³, N_v =1.04×10¹⁹cm⁻³, k=1.38×10⁻²³ J/K and n_i =1.5×10¹⁰cm⁻³
- (a) Showing the simplified geometry of an n-channel p-n junction FET arrive at its current voltage relationship in terms of h₁ and h₂. Where h₁ and h₂ are depletion widths at the source and drain ends respectively.
 (b) Showing the cross section view of a basic charge coupled device (CCD), describe its principle of
 - (b) Showing the cross section view of a basic charge coupled device (CCD), describe its principle of operation. [4]
- (a) Sketch the steady state excess minority carrier concentration in a p-n junction photo diode and obtain an expression for total steady state diode photocurrent density.
 (b)Define population inversion. What are the three requirements that must be satisfied in order to form
- population inversion in a diode laser? [4]

 5 (a) Explain the working of a p-n junction solar cell with a block diagram. Obtain the expressions for the
- open circuit voltage and the voltage at which maximum power is delivered to the load. [6]
 (b) Discuss punch through breakdown in a bipolar transistor. [4]
- 6 (a) Describe with a neat diagram Czochralski method of crystal growth . [5]
 - (b)Describe various steps involved in the processing of a planar p-n junction diode. [5]