

Reg. No.					
				-	

MANIPAL UNIVERSITY

DEPARTMENT OF SCIENCES

FOURTH SEMESTER MSc (PHYSICS) END SEMESTER EXAMINATION MAY - 2016

SUBJECT: NUCLEAR PHYSICS III (PHY-708.6)

(CREDIT SYSTEM)

TIME: 3 HOURS

MAX. MARKS: 50

Answer Any FIVE full questions. Each sub questions carries FIVE marks.

- 1. (a) Explain electron scattering experiment of measurement of nuclear charge radius.
 - (b) What is the origin of nuclear magnetic moment? Explain molecular beam magnetic resonance method of determination of nuclear magnetic moment.
- (a) Obtain an expression for the flux of neutrons as a function of energy, while being slowed down without absorption.
 - (b)Show that critical energy of deformation for causing fission is a linear function of the parameter Z^2/A .
- 3. (a) Explain any two basic characteristics of nuclear fusion reaction.
 - (b) Obtain minimum critical volume for a reactor with spherical geometry in terms of critical buckling.
- (a) Arrive at four factor formula for a neutron multiplying system and hence give the condition for criticality.
 - (b) What is the role of a moderator in a nuclear reactor? Explain with an example. Compute average number of collisions to thermalize 2 MeV neutrons in deuterium.
- 5. (a) How does a neutron reflector alters the critical geometry of reactor core. Explain.
 (b)Explain "pinch effect" with reference to nuclear fusion reaction. In neutron induced fission of U-235 nucleus, 185 MeV energy is released. If a reactor is continuously operating at a power level of 100 MW, how long will it take for one kg of Uranium to be consumed in the reactor?
- (a) How to produce transuranic element Plutonium (Z=94) isotope and mention its properties. Write down the outer electronic configuration for the same element.
 - (b) Give an interpretation for an asymmetry in the yield distribution of fission fragments. A hypothetical point source of thermal neutrons emits 10^6 neutrons per second into a surrounding infinite graphite block. Determine the neutron flux at a distance of 54 cm from this source. (Given: κ (=1/L) is 0.0185 cm⁻¹ and D is 0.94 cm)
