

Reg. No.		

MANIPAL UNIVERSITY

Make up

DEPARTMENT OF SCIENCES

FOURTH SEMESTER MSc (PHYSICS) END SEMESTER MAKE-UP EXAMINATION, JUNE - 2016

SUBJECT: NUCLEAR PHYSICS III (PHY-708.6)

(CREDIT SYSTEM)

TIME: 3 HOURS

MAX. MARKS: 50

Answer Any FIVE full questions. Each sub questions carries FIVE marks.

- (a) Explain the estimation of nuclear size using Muon X ray method.
 (b) Explain molecular beam magnetic resonance method of determination of nuclear magnetic moment.
- 2. (a) Explain Fermi Age Model for neutron slowing down in an infinite rector and obtain an expression for neutron flux for a non-absorbing medium.
 - (b)Show that critical energy of deformation for causing fission is a linear function of the parameter Z^2/A .
- 3. (a) What is the Lawson's criterion for nuclear fusion reaction? Explain.
 - (b) Obtain minimum critical volume for a reactor with rectangular parallelepiped geometry in terms of critical buckling.
- 4. (a) What is a breeder reactor? Explain the breeding principle with an example.
 - (b) Explain elementary theory of neutron diffusion. Compute average number of collisions to thermalize 2 MeV neutrons in deuterium.
- 5. (a) How does a neutron reflector alters the critical geometry of reactor core. Explain.
 - (b)Explain "magnetic pressure" with reference to nuclear fusion reaction. In neutron induced fission of U-235 nucleus, 185 MeV energy is released. If a reactor is continuously operating at a power level of 100 MW, how long will it take for one kg of Uranium to be consumed in the reactor?
- (a) How to produce transuranic element Californium (Z=98) isotope and mention its properties. Write down the outer electronic configuration for the same element.
 - (b) A reactor core contains fuel and moderator [Σ_s = 0.64 cm⁻¹, ζ = 0.17]. The thermal neutron flux is 2x10¹² neutrons/(cm²)(sec) and Σ_a for thermal neutrons in the fuel is 0.005 cm⁻¹; for each thermal neutrons absorbed, 1.7 fission neutrons are produced. Estimate the epithermal neutron flux per unit lethargy interval.
