

MANIPAL UNIVERSITY, MANIPAL

FOURTH SEMESTER M.Sc (PHYSICS) END SEMESTER EXAMINATION, MAY, 2016

SUB: THERMODYNAMICS AND STATISTICAL PHYSICS (PHY-702)

TIME: 3 HRS.

MAX.MARKS: 50

NOTE: (A) ANSWER ANY FIVE FULL QUESTIONS. (B) EACH QUESTION CARRIES 10 MARKS.

1 A .	Obtain the four, Maxwell's thermodynamic relations.	[7]
1B.	Obtain an expression for $C_P - C_V$, in terms of bulk modulus and coefficient of vol expansion.	ume [3]
2A.	Obtain the expressions for the work done by a van der Waals gas in a reversible isothermal expansion at temperature T, in terms of van der Waals constants, its i and final volumes. Also obtain the expressions for the change in internal energy the gas.	nitial of [5]
2B.	Calculate the volume element in the phase space for a harmonic oscillator, and obtain an expression for the number of quantum states in a volume element of th phase space.	e [5]
3A.	State and prove Liouville's theorem.	[5]
3B.	Obtain an expression for the probability of distribution in the random walk problem	n. [5]
4A.	State and prove the equipartition theorem.	[5]
4B.	A diatomic gas is in thermal equilibrium at temperature 500 K. Its rotational constant is B = 200/m. Compute the rotational populations (in terms of groun state population) in the rotational states: J = 0, 10, 20. The rotational energy is E = $J(J+1)$ h c B. Speed of light in vacuum = 3.00×10^8 m/s, Planck's constant = 6.63×10^{-34} J.s, Boltzmann constant = 1.38×10^{-23} J/K.	l d [5]
5A.	Obtain Planck's radiation law of blackbody radiation by quantum statistics of phot gas. Show its reduction to Rayleigh-Jeans law and Wien's law under various circumstances.	on [5]
5B.	Discuss briefly the free electron theory of metals considering it as an ideal Fermi-	gas. [5]
6A.	Discuss Brownian motion as an example of fluctuating force using Fokker-Planck equation.	[5]
6B.	Setup the diffusion equation and solve it. Show that $\langle r^2(t) \rangle = 6 D t$.	[5]

Useful formulae:

Stirling formula: $n! \cong (2\pi n)^{\frac{1}{2}} n^n e^{-n}$ $\ell n(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots, |x| < 1$ $e^x = \sum_o^\infty \frac{x^n}{n!}$ $\int_o^\infty x^r e^{-nx} dx = \frac{r!}{n^{r+1}}$ $\int_o^\infty x^4 \exp(-ax^2) dx = \frac{3}{8a^2} \sqrt{\frac{\pi}{a}}$ $\int_o^\infty x^2 \exp(-ax^2) dx = \frac{1}{4a} \sqrt{\frac{\pi}{a}}$ $\int_o^\infty \frac{x^{n+1}}{e^x - 1} dx = \Gamma(n) \zeta(n)$ $\Gamma(n+1) = n!$ if n is an integer

 $\Gamma(n+1) = n(n-1) \cdots \frac{3}{2} \cdot \frac{1}{2} \cdot \sqrt{\pi}$ if n is half integral

$$\zeta(4) = \frac{\pi^4}{90}$$
$$\zeta\left(\frac{5}{2}\right) = 1.341$$
$$\zeta\left(\frac{3}{2}\right) = 2.612$$