Reg. No.									
----------	--	--	--	--	--	--	--	--	--

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

II SEMESTER M.TECH (EMAL / PESC) END SEMESTER EXAMINATION, MAY 2016

APPLICATION OF POWER ELECTRONICS IN POWER SYSTEMS [ELE540]

(PROGRAM ELECTIVE- II)

REVISED CREDIT SYSTEM

Time: 3 Hours

14 MAY 2016

MAX. MARKS: 50

07

04

03

03

Instructions to Candidates:

- Answer **ANY FIVE FULL** questions.
- Missing data may be suitable assumed.
- 1A. What are the factors which affect loadability of an AC transmission line? Discuss the methods to increase loadability of the line. *03*
- 1B. Derive the expressions for midpoint voltage, current and power of a symmetrical long line with a series capacitor connected at the midpoint of the line. A 500kV, 50Hz, 600km long symmetrical line is operated at the rated voltage. Inductance of the line= 1 mH/km and capacitance=11 nF/km. Angular difference δ =50°.
 - i) What is the maximum power carried by the line and the midpoint voltage corresponding to this condition?
 - ii) Compute the power transfer through the line when a series capacitor of reactance 150Ω is connected at midpoint of the line.
- 2A. With a neat block diagram, explain SVC controller used for stability studies. Bring out the differences between susceptance regulator and supplementary modulating controller. *05*
- 2B. Explain the basic working principle of STATCOM. Write the differential equations governing a 3 phase, 6 pulse STATCOM. *05*
- 3A. With relevant circuit diagram and waveforms, explain the capacitive vernier mode of operation of TCSC.
- 3B. Compare the performance of STATCOM and SSSC with respect to transient stability, voltage regulation and power enhancement.
- 3C. Define power quality. Write the following for voltage sag and harmonics i) cause, ii) effect and iii) remedial measure.03
- 4A. Consider the current waveform:

 $i(t) = 2 + 100 \sin(wt) + 30 \sin(3wt) + 17 \sin(5wt) + 8 \sin(7wt)$ A. Compute the following i) total rms current and ii) THD of the current **03**

- 4B. What is a static transfer switch (STS)? Explain the working of STS under normal and faulty condition.
- 4C. Consider a distribution system with feeder impedance 0.01+j0.2 pu and load impedance 0.75+j0.3 pu connected in series with a supply voltage 220V, 50Hz. Compute the DVR voltage if the load voltage is to be brought to 220V using minimum energy compensation.
 04

- 5A. A 1 phase, 3 branch shunt passive single tuned filter (tuned for 3^{rd,} 5th and 7th harmonic frequency) is employed to reduce the THD of supply current and to improve the displacement power factor to unity for a 1 phase, 240V, 50Hz fed diode bridge converter which draws an ac current of i(t)= 50sin(wt-30°)+16sin(3wt)+10sin(5wt)+7sin(7wt). Compute the following
 - i) Fundamental active and reactive power drawn by the load
 - ii) Values of filter elements if the quality factor is 50.
 - iii) THD of source current if the source reactance at fundamental frequency is j0.5 Ω . **07**
- 5B. With a neat block diagram, explain any one method of generating reference current waveform in distortion identifier of shunt active filter. 03
- 6A. Evaluate a HVDC transmission system with respect to transmission cost and performance. **04**
- 6B. A 3 phase 48 pulse bridge rectifier is fed from transformer with turns ratio 0.45 and primary voltage 240 kV. Determine (i) the output voltage of rectifier when firing angle is 18° and commutation angle 18° (ii) fundamental component of ac line current, power factor, active and reactive power at HT bus if the dc current is 2 kA.