Reg. No.					

MANIPAL INSTITUTE OF TECHNOLOGY Manipal University

SECOND SEMESTER M TECH (OPEN ELECTIVE) DEGREE END SEMESTER EXAMINATION

MAY / JUNE 2016

SUBJECT: NEURAL NETWORKS AND FUZZY LOGIC (ECE -567)

TIME: 3 HOURS

Instructions to candidates

- Answer **ANY FIVE** full questions.
- Missing data may be suitably assumed.
- 1A. Prototype points are given as

$$x_1 = [5,1]^t$$
, $x_2 = [7,3]^t$ $x_3 = [3,2]^t$ $x_4 = [5,4]^t \rightarrow class 1$
 $x_5 = [0,0]^t$, $x_6 = [-1,-3]^t$ $x_3 = [-2,3]^t$ $x_4 = [-3,0]^t \rightarrow class 2$

- i. Determine if the two classes of patterns are linearly separable
- ii. Determine the canter of gravity for patterns of each class and find decision surface in pattern space.
- iii. Design dichotomizer for the given prototype points and determine how it would recognize the following input patterns of unknown class $x = [4,2]^{t}$?
- 1B. Consider the fuzzy sets F and G defined in U=[0,1,2,3,4,5] by

$$\mu_F(x) = \frac{x}{x+2}$$
 and $\mu_G(x) = 2^{-x}$

Determine

- i. $F \cap \overline{G}$ ii) $\overline{F \cup G}$ iii) Bounded Sum
- 2A. Given two fuzzy sets

 $A = \frac{0.1}{1} + \frac{0.3}{2} + \frac{0.6}{3} + \frac{0.8}{4} + \frac{1}{5} \quad and \qquad B = \frac{0.2}{1} + \frac{0.5}{2} + \frac{0.7}{3} + \frac{0.9}{4} + \frac{0}{5}$

Determine the following:

- i. Fuzzy union of A0.4 and slightly B by algebraic sum
- ii. Fuzzy intersection by Dubois –Prade class with $\alpha = 1$
- iii. Fuzzy AND with p = 1
- iv. Sugeno complement of fuzzy set A with $\lambda = 1$
- v. IF plus A THEN minus B by Godel implication
- 2B. Design an auto associative memory to store the following patterns [1,-1,-1]^t, [-1,1,1] Perform synchronous update and compute the energy for [1,-1,1].

(6+4)

(6+4)

3A. With the help of a flowchart, explain all he computation steps of ART1 algorithm. Draw the network architecture.

MAX. MARKS: 50

- 3B. Three steps of perceptron learning performed on a bipolar binary neuron resulted in $W^4 = 0$. Determine the initial weight W^1 for the following input and desired outputs. Assume c = 0.5.
 - $X1 = [1, 1, -0.5, -0.5]^t$ d1 = 1 $X2 = [1, -5, 1.5, 0]^t$ d2 = -1 $X3 = [-2, 5, 0, 1]^t$ d3 = 1
- 3C. Implement XOR classification using Mc Culloch _Pitts model.

(4+4+2)

4A. Consider a set P= {P1,P2,P3,P4} of four varieties of paddy plans, set D ={D1,D2,D3,D4} of various diseases affecting the plants and S= { S1,S2,S3,S4 } the common symptoms of the diseases. Let R be a relation on P x D and Q be a relation on D x S as

		D1	D2	D3	D4		<i>S</i> 1	<u>5</u> 2	<i>S</i> 3	<i>S</i> 4
<i>R</i> =	<i>P</i> 1	0.6	0.6	0.9	0.8]	D1	0.1	0.2	0.7	0.9]
	P2	0.1	0.2	0.9	0.8	$o - D^2$	1	1	0.4	0.6
	P3	0.9	0.3	0.4	0.8	Q — D3	0	0	0.5	0.9
	<i>P</i> 4	0.9	0.8	0.1	0.2	D4	0.9	1	0.8	0.2

Obtain the association of the plants with different symptoms of diseases using Max-Min composition

- 4B. Explain genetic algorithm with the help of a flowchart.
- 4C. Show that the Yager's sum, Yager's product and basic fuzzy compliment form associative class

(4+4+2)

5A. Consider a 2-input 1-output fuzzy system constructed from the following two rules:

If x1 is A1 and x2 is A2, Then y is A2

If x1 is A2 and x2 is A1, Then y is A1

Where A1 and A2 are fuzzy sets with membership functions.

 $\mu_{A1}(u) = 1 - |u| \;,\; if - 1 \leq u \leq 1 \qquad \mu_{A2}(u) = 1 - |u - 1| \;,\; if \;\; 0 \leq u \leq 2$

= 0 otherwise = 0 otherwise

If the input to the fuzzy system is $[x1^*, x2^*] = [0.5 \ 0.9]$, use singleton fuzzifier to determine the output of the fuzzy system y* in the following cases:

- i) Minimum inference engine and mean of maxima defuzzifier
- ii) Product inference engine and center average defuzzifier
- 5B. Four steps of Hebbian learning of a single neuron network have been implemented starting with $W = [1,1]^t$ for learning constant c= 1 using

 $X1=[1,-2]^t$ $X2=[0,1]^t$ $X3=[2,3]^t$ $X1=[1,-1]^t$ Find final weights for bipolar binary activation function

(6+4)

6. Analyse a single feed forward and back propagation step for a two layered feed forward network of, two input two output and bias=-1 in each layer. The transposed weight matrices for both the layers are:

1st layer
2nd layer

•			2nd layer	
$V = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$	-2 0	$^{3}_{-1}$]	$W = \begin{bmatrix} 1 & 0 \\ 1 & -2 \end{bmatrix}$	2] 3]

Use unipolar continuous neurons. Assume $\eta=1$ and $\lambda=1$. The input to the network and desired outputs are

$$\begin{bmatrix} x1\\ x2\\ -1 \end{bmatrix} = \begin{bmatrix} 1\\ 3\\ -1 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} d1\\ d2 \end{bmatrix} = \begin{bmatrix} 1\\ 0 \end{bmatrix}$$

(10)