

A Constituent Institution of Manipal University

FIRST SEMESTER M.Tech. (INDUSTRIAL AUTOMATION AND ROBOTICS) DEGREE END SEMESTER EXAMINATION

November /December 2016 SUBJECT: ANALOG AND DIGITAL ELECTRONICS (MTE-5131)

TIME: 3 HOURS MAX. MARKS: 50

Instructions to candidates

- Answer **ANY FIVE** full questions.
- Missing data may be suitably assumed.

1A.	Servokon systems has recruited you as a design engineer. Your first task is to design a circuit voltage stabilizer that clamps the input waveform by 5 V. Design the circuit using an op-amp necessary waveforms to support your design.	
1B.	Give a short note on the design of an Integrator using an op-amp. Support your answer with sui equations.	table (3)
2A.	Differentiate between low pass and high pass active filters with suitable circuit diagrams.	(3)
2B.	Velodynelidar is a manufacturer of LiDAR equipment used in scanners and sensors. Suggest design of a filter that passes green color light only in the range of 520-560 nm.	t the (7)
3A.	According to the system shown in Fig. 3 A below, design a 5421 to 8421 code converter.	(5)
3B.	The operating conditions (ON = 1 and OFF = 0) of three pumps (x, y, z) are to be monitored. $x = 1$ implies that pump x is ON, and so is the case for pumps y and z. It is required that the indicator LED, P shown in Fig. 3 B below, should glow if majority of the pumps fail. Enter the logical values in the K-map in the format shown in Fig. 3 B, and derive the SOP expression, whose output is logical value 1, when a majority of the pumps fail. (5)	
	Togical value 1, when a majority of the pumps fun.	(3)
4A.	Describe the architecture of the Xilinx 3020 CLB with a suitable circuit diagram.	(5)
4B.	Differentiate between the shareable and parallel expanders used in the ALTERA 7000 series FPGAs.	es of (5)
5A.	Analyse the Fig 5 A and encryon the following questions:	
JA.	Analyse the Fig 5A and answer the following questions:	
	i. What is the content of DATA register?	
	ii. What would be the output for the instruction accessing DATA [8] [2]?	(2)
	iii. What would be the output for the instruction accessing DATA [8] [6:2]?	(3)
5B.	Write a Verilog program to perform the gate level modelling of the circuit shown in Fig 5 B.	(7)
6A.	Analyse the sequential circuit shown in Fig 6 A.	(5)

6B. Design a sequential circuit using D flip flops for a lift that operates for two floors, GROUND and FIRST. When the UP button is pressed, the lift goes from GROUND to FIRST floor and a RED LED glows. When the DOWN button is pressed, the lift goes from FIRST to GROUND floor and a GREEN LED glows. Arrive at the final circuit by first designing the finite state machine (state diagram).

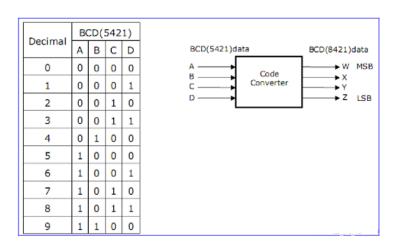


Figure 3A

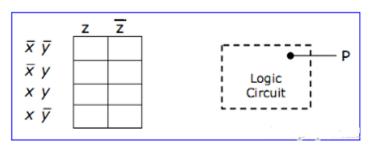


Figure 3B

Verilog Code: reg [8:1] DATA; reg DRAM [10:1]; DATA = DRAM [8];

DRAM Memory:

	•
10101010	
11011010	
11111111	
00000000	
11110000	
00001111	
01010101	
11001100	
00110011	
00011100	

Figure 5A

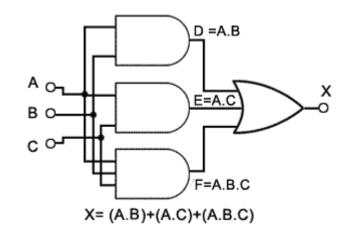


Figure 5B

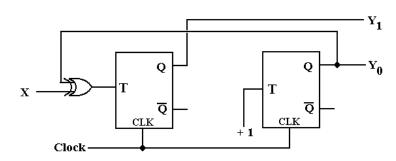


Figure 6A