Reg. No.

MANIPAL UNIVERSITY SCHOOL OF INFORMATION SCIENCES

FIRST SEMESTER MASTER OF ENGINEERING – ME (EMBEDDED SYSTEMS)
DEGREE EXAMINATION – APRIL / MAY 2016

SUBJECT: ESD 603 - REAL TIME OPERATING SYSTEMS

Saturday, May 7, 2016

Time: 10.00 – 13.00 Hrs. Max. Marks: 100

1. Describe the evolution of Operating systems for a uniprogramming system to multiprogramming and multitasking systems. Relate the evolution to the developments in hardware.

(10 marks)

- 2. Why Process Control Blocks are required? What information process control block contains? (4+6=10 marks)
- 3. With neat diagrams explain the
- a) Round Robin Scheduling
- b) Multilevel Feedback Queue Scheduling.

(5+5=10 marks)

- 4. Explain the various hardware solutions to achieve mutual exclusion between processes. (10 marks)
- 5. What is a semaphore? What are the drawbacks of using semaphore? With diagram explain the concept of queueing implementation of semaphore.

(2+2+6=10 marks)

6. Let P1, P2, P3, P4 and P5 be 5 processes and 3 resource types A, B and C. A has 10 instances, B has 5 and C has 7 instances. Max needs of P1 is <7,5,3> (7 A type, 5 B type and 3 C type), P2 is <3,2,2> P3 is <9, 0, 2> P4 is < 2,2,2> and P5 is <4,3,3> Current allocations are P1<0,1,0> P2 <3,0,2> P3<3,0,2> P4<2,1,1> and P5<0,0,2> . Determine whether the system is in a safe state. Whether a request of <3,3,0> of process P5 can be granted? Justify your answer.

(8+2=10 marks)

ESD 603

Describe paging as a memory management approach. Draw a diagram which indicates how
logical address is converted to a physical address in this scheme. Also mention the benefits and
drawbacks of this approach

(3+5+2=10 marks)

- 8. Consider a page size of 100 bytes and the following memory address reference string: 120, 220,312, 423, 211, 115, 543, 653, 234, 167, 278, 190, 225, 321, 765, 666, 333, 222, 111, 249. How many page faults would occur for the following replacement algorithms, assuming 4 page frames?
 - a) FIFO replacement
 - b) LRU replacement
 - c) Optimal replacement

(2+4+4=10 marks)

9. Explain the concept of virtual memory and demand paging.

(10 marks)

- 10. Consider three processes P1, P2 and P3. The periods for P1, P2 and P3 are 80, 40 and 20 respectively. And their processing times are 40, 10 and 5 respectively.
 - a) Is it possible to schedule these tasks based on CPU utilization test?
- b) Draw the **Time line diagram** for the above processes. Do the processes meet their deadlines in this case?

(4+6=10 marks)
